Targeted delivery of genome editors in vivo

targeted-delivery-of-genome-editors-in-vivo
Targeted delivery of genome editors in vivo
  • Levesque, S. & Bauer, D. E. CRISPR-based therapeutic genome editing for inherited blood disorders. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-025-01236-y (2025).

    Article  PubMed  Google Scholar 

  • Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stigzelius, V., Cavallo, A. L., Chandode, R. K. & Nitsch, R. Peeling back the layers of immunogenicity in Cas9-based genomic medicine. Mol. Ther. 33, 4714–4730 (2025).

    Article  PubMed  Google Scholar 

  • Porteus, M. Genome editing: a new approach to human therapeutics. Annu. Rev. Pharmacol. Toxicol. 56, 163–190 (2014).

    Article  Google Scholar 

  • Kumar, M., Kulkarni, P., Liu, S., Chemuturi, N. & Shah, D. K. Nanoparticle biodistribution coefficients: a quantitative approach for understanding the tissue distribution of nanoparticles. Adv. Drug Deliv. Rev. 194, 114708 (2023).

    Article  PubMed  Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  PubMed  Google Scholar 

  • Musunuru, K. et al. Patient-specific in vivo gene editing to treat a rare genetic disease. N. Engl. J. Med. 392, 2235–2243 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Horie, T. & Ono, K. VERVE-101: a promising CRISPR-based gene editing therapy that reduces LDL-C and PCSK9 levels in HeFH patients. Eur. Heart J. Cardiovasc. Pharmacother. 10, 89–90 (2023).

    Article  Google Scholar 

  • Cohn, D. M. et al. CRISPR-based therapy for hereditary angioedema. N. Engl. J. Med. 392, 458–467 (2025).

    Article  PubMed  Google Scholar 

  • Lee, R. et al. An investigational in vivo base editing medicine targeting ANGPTL3, VERVE-201, achieves precise and durable liver editing in nonclinical studies. Atherosclerosis 395, 118496 (2024).

    Article  Google Scholar 

  • Beam Therapeutics. A phase 1/2 dose-exploration and dose-expansion study to evaluate the safety and efficacy of BEAM-302 in adult patients with α-1 antitrypsin deficiency (AATD)-associated lung disease and/or liver disease. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06389877 (2024).

  • Morrow, P. K. et al. Abstract 17013: CTX320: an investigational in vivo CRISPR-based therapy efficiently and durably reduces lipoprotein (a) levels in non-human primates after a single dose. Circulation 148, A17013 (2023).

    Google Scholar 

  • HuidaGene Therapeutics. An investigator-initiated clinical study evaluating the CRISPR–hfCas12Max gene editing therapy in the treatment of Duchenne muscular dystrophy (DMD). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06594094 (2024).

  • Beam Therapeutics. A phase 1/2, dose-exploration study to evaluate the safety and efficacy of BEAM-301 in patients with glycogen storage disease type Ia (GSDIa) homozygous or compound heterozygous for the G6PC1 c.247C>T (p.R83C) variant. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06735755 (2024).

  • Arbor Biotechnologies. A phase 1/2 dose escalation study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and preliminary efficacy of ABO-101 in participants with primary hyperoxaluria type 1 (PH1). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06839235 (2025).

  • Tune Therapeutics. Phase 1b multicenter, open-label study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of Tune-401 in participants with chronic hepatitis B infection. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06671093 (2024).

  • Burdo, T. H. et al. Preclinical safety and biodistribution of CRISPR targeting SIV in non-human primates. Gene Ther. 31, 224–233 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Excision BioTherapeutics. A phase 1/2a, sequential cohort, single ascending dose study of the safety, tolerability, biodistribution, and pharmacodynamics of EBT 101 in aviremic HIV-1 infected adults on stable antiretroviral therapy. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05144386 (2021).

  • Epicrispr Biotechnologies. A phase 1/2 open-label dose-escalation study to evaluate the safety, tolerability, and biological activity of EPI-321, an AAVrh74-delivered epigenetic editing therapy in adult FSHD patients. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06907875 (2025).

  • Streilein, J. W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003).

    Article  PubMed  Google Scholar 

  • Nakao, S., Hafezi-Moghadam, A. & Ishibashi, T. Lymphatics and lymphangiogenesis in the eye. J. Ophthalmol. 2012, 783163 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Toral, M. A. et al. Investigation of Cas9 antibodies in the human eye. Nat. Commun. 13, 1053 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce, E. A. et al. Gene editing for CEP290-associated retinal degeneration. N. Engl. J. Med. 390, 1972–1984 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Q., Wei, L. & Chen, Y. From bench to bedside: developing CRISPR/Cas-based therapy for ocular diseases. Pharmacol. Res. 213, 107638 (2025).

    Article  PubMed  Google Scholar 

  • Muller, A. et al. High-efficiency base editing in the retina in primates and human tissues. Nat. Med. 31, 490–501 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Luk, A. et al. World’s first CRISPR/RNA-targeting therapy (HG202) for patients with neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 65, 4357 (2024).

    Google Scholar 

  • Wei, A. et al. In vivo CRISPR gene editing in patients with herpetic stromal keratitis. Mol. Ther. 31, 3163–3175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain, A. et al. CRISPR–Cas9–based treatment of myocilin-associated glaucoma. Proc. Natl Acad. Sci. USA 114, 11199–11204 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E.coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).

    Article  PubMed  Google Scholar 

  • SNIPR Biome. A phase 1, randomized, double-blind, first-in-human, dose escalation study investigating the safety, recovery, and pharmacodynamics of multiple oral administrations of SNIPR001 in healthy subjects. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05277350 (2022).

  • SNIPR Biome. SNIPR Biome Reports Positive Clinical Interim Results for Groundbreaking, First-in-Human, CRISPR-Based Microbial Gene Therapy https://static1.squarespace.com/static/5bacc67990f9041ab0d5b0c1/t/6476ee0c6181141d414b9ec3/1685515789399/230529+SNIPR+Phase+1+Data+Release.pdf (2023).

  • Xue, Y. et al. RNA base editing therapy cures hearing loss induced by OTOF gene mutation. Mol. Ther. 31, 3520–3530 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • HuidaGene Therapeutics. An open-label, multiple-cohort, dose-finding, investigator-initiated trial to evaluate the safety, tolerability, and efficacy of HG205 RNA base-editing therapy in subjects with OTOF-p.Q829X mutation-associated hearing loss. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06025032 (2023).

  • Yang, D. et al. An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates. Nat. Neurosci. 28, 72–83 (2025).

    Article  PubMed  Google Scholar 

  • HuidaGene Therapeutics. An open-label, multiple-dose clinical study to evaluating the safety, tolerability and preliminary efficacy of a single intracerebroventricular injection of HG204 for the treatment of MECP2 duplication syndrome. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06615206 (2024).

  • Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151–159 (2021).

    Article  PubMed  Google Scholar 

  • Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR–Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. 24, 1319–1332 (2024).

    Article  PubMed  Google Scholar 

  • Amoasii, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 9, eaan8081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho, T.-C. et al. Scaffold-mediated CRISPR–Cas9 delivery system for acute myeloid leukemia therapy. Sci. Adv. 7, eabg3217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, S.-Q. et al. AAV5 delivery of CRISPR–Cas9 supports effective genome editing in mouse lung airway. Mol. Ther. 30, 238–243 (2022).

    Article  PubMed  Google Scholar 

  • Rosenblum, D. et al. CRISPR–Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl, E. C. et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 31, 2422–2438 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasiewicz, L. N. et al. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, R. et al. An investigational in vivo base editing medicine targeting ANGPTL3, VERVE-201, achieves potent and LDLR-independent liver editing in mouse models. Eur. Heart J. 44, ehad655.2521 (2023).

    Article  Google Scholar 

  • Verve Therapeutics. A phase 1b single ascending dose study to evaluate the safety of VERVE-201 in patients with refractory hyperlipidemia. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06451770 (2024).

  • Pupo, A. et al. AAV vectors: the Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515–3541 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, G.-P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA 99, 11854–11859 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Strebinger, D. et al. Cell type-specific delivery by modular envelope design. Nat. Commun. 14, 5141 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 42, 1684–1692 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. R. et al. Targeted delivery of CRISPR–Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngo, W. et al. Mechanism-guided engineering of a minimal biological particle for genome editing. Proc. Natl Acad. Sci. USA 122, e2413519121 (2025).

    Article  PubMed  Google Scholar 

  • Karp, H. et al. Packaged delivery of CRISPR–Cas9 ribonucleoproteins accelerates genome editing. Nucleic Acids Res. 53, gkaf105 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Palanki, R. et al. In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells. Proc. Natl Acad. Sci. USA 121, e2400783121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Geczy, R. et al. Lipid nanoparticle-mediated gene editing of human primary T cells and off-target analysis of the CRISPR–Cas9 indels. Blood 142, 6833 (2023).

    Article  Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue specific mRNA delivery and CRISPR/Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. 43, 1445–1457 (2025).

    Article  PubMed  Google Scholar 

  • Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J. Control. Release 362, 797–811 (2023).

    Article  PubMed  Google Scholar 

  • Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Q. et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science 384, 1220–1227 (2024).

    Article  PubMed  Google Scholar 

  • Neumann, E. N. et al. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 384, ado7082 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S. R. et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17, 541–550 (2020).

    Article  PubMed Central  Google Scholar 

  • Kim, H. et al. Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys. Nat. Biotechnol. 43, 1813–1820 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngo, W. et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).

    Article  PubMed  Google Scholar 

  • Glaumann, H., Fredzell, J., Jubner, A. & Ericsson, J. L. E. Uptake and degradation of glycogen by Kupffer cells. Exp. Mol. Pathol. 31, 70–80 (1979).

    Article  PubMed  Google Scholar 

  • Seo, J. W. et al. Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs. Biomaterials 288, 121701 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • l’Hortet, A. C. et al. In MDA Clinical & Scientific Conference 206 https://www.mdaconference.org/abstract-library/epi-321-a-potential-cure-for-fshd/ (Muscular Dystrophy Association, 2023).

  • Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaessen, S. F. C. et al. AAV gene therapy as a means to increase apolipoprotein (Apo) A-I and high-density lipoprotein-cholesterol levels: correction of murine ApoA-I deficiency. J. Gene Med. 11, 697–707 (2009).

    Article  PubMed  Google Scholar 

  • Prasad, K.-M. R., Xu, Y., Yang, Z., Acton, S. T. & French, B. A. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 18, 43–52 (2011).

    Article  PubMed  Google Scholar 

  • Radhiyanti, P. T., Konno, A., Matsuzaki, Y. & Hirai, H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neurosci. Lett. 756, 135956 (2021).

    Article  PubMed  Google Scholar 

  • Yang, L. et al. MicroRNA-122-mediated liver detargeting enhances the tissue specificity of cardiac genome editing. Circulation 149, 1778–1781 (2024).

    Article  PubMed  Google Scholar 

  • Hoffmann, M. D. et al. Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res. 47, e75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirosawa, M., Fujita, Y. & Saito, H. Cell-type-specific CRISPR activation with microRNA-responsive AcrllA4 switch. ACS Synth. Biol. 8, 1575–1582 (2019).

    Article  PubMed  Google Scholar 

  • Lee, J. et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25, 1421–1431 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X.-W. et al. A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21, 522–530 (2019).

    Article  PubMed  Google Scholar 

  • Garcia-Guerra, A. et al. Tissue-specific modulation of CRISPR activity by miRNA-sensing guide RNAs. Nucleic Acids Res. 53, gkaf016 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Galizi, R. & Jaramillo, A. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr. Opin. Biotechnol. 55, 103–113 (2019).

    Article  PubMed  Google Scholar 

  • Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2023).

    Article  PubMed  Google Scholar 

  • Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2023).

    Article  PubMed  Google Scholar 

  • Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell, S. K., Rivera-Soto, R. & Gray, S. J. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov. Med. 19, 49–57 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Mancuso, P. et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 11, 6065 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohrt, K. O. Excision’s EBT-101 demonstrates safety in clinical trial but does not cure HIV. CRISPR Medicine News https://crisprmedicinenews.com/news/excisions-ebt-101-demonstrates-safety-in-clinical-trial-but-does-not-cure-hiv/ (2024).

  • Tan, I.-L. et al. Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis. Cell Rep. 42, 113339 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • An, Y. et al. Design of hypoxia responsive CRISPR–Cas9 for target gene regulation. Sci. Rep. 13, 16763 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, H. et al. Ultrasound-controlled CRISPR/Cas9 system augments sonodynamic therapy of hepatocellular carcinoma. ACS Cent. Sci. 7, 2049–2062 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. Very fast CRISPR on demand. Science 368, 1265–1269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacesa, M. et al. Structural basis for Cas9 off-target activity. Cell 185, 4067–4081 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Greig, J. A. et al. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat. Biotechnol. 42, 1232–1242 (2024).

    Article  PubMed  Google Scholar 

  • iECURE. A phase 1/2/3 first-in-human, open-label, dose-escalation study to evaluate the safety and efficacy of a single intravenous (IV) administration of ECUR-506 in males less than 9 months of age with genetically confirmed neonatal onset ornithine transcarbamylase (OTC) deficiency. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06255782 (2023).

  • Regeneron Pharmaceuticals. A two-part open-label study of REGV131-LNP1265, a CRISPR/Cas9 based coagulation factor IX gene insertion therapy in participants with hemophilia B. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06379789 (2024).

  • Jeune, V. L., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24, 59–67 (2013).

    Article  PubMed Central  Google Scholar 

  • Duan, D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol. Ther. 31, 3123–3126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y., Jeong, M., Park, J., Jung, H. & Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 55, 2085–2096 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas, J. E. et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med. 14, 288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wignakumar, T. & Fairchild, P. J. Evasion of pre-existing immunity to Cas9: a prerequisite for successful genome editing in vivo? Curr. Transplant. Rep. 6, 127–133 (2019).

    Article  Google Scholar 

  • Kishimoto, T. K. & Samulski, R. J. Addressing high dose AAV toxicity — ‘one and done’ or ‘slower and lower’? Expert Opin. Biol. Ther. 22, 1067–1071 (2022).

    Article  PubMed  Google Scholar 

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullis, P. R. & Felgner, P. L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 23, 709–722 (2024).

    Article  PubMed  Google Scholar 

  • Carbonaro-Sarracino, D. A. et al. Dosing and re-administration of intravenous lentiviral vector for liver-directed gene transfer in young rhesus monkeys and ADA-deficient mice. Mol. Ther. Methods Clin. Dev. 24, S302–S303 (2016).

    Google Scholar 

  • Chen, K. et al. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat. Commun. 15, 1727 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Staahl, B. T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. https://doi.org/10.1002/wsbm.1408 (2018).

  • Andari, J. E. & Grimm, D. Production, processing, and characterization of synthetic AAV gene therapy vectors. Biotechnol. J. 16, e2000025 (2021).

    Article  PubMed  Google Scholar 

  • Jiang, Z. & Dalby, P. A. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol. 41, 1268–1281 (2023).

    Article  PubMed  Google Scholar 

  • De, A. & Ko, Y. T. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opin. Drug Deliv. 20, 175–187 (2023).

    Article  PubMed  Google Scholar 

  • Kim, B. et al. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J. Control. Release 353, 241–253 (2023).

    Article  PubMed  Google Scholar 

  • Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9–sgRNA ribonucleoproteins. Nat. Commun. 10, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Merten, O.-W., Hebben, M. & Bovolenta, C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 3, 16017 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder, G. K. & Chen, C.-C. The very stable lentiviral vector. Mol. Ther. Methods Clin. Dev. 32, 101223 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry, G. E. & Asokan, A. Cellular transduction mechanisms of adeno-associated viral vectors. Curr. Opin. Virol. 21, 54–60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, M. N. et al. Safer non-viral DNA delivery using lipid nanoparticles loaded with endogenous anti-inflammatory lipids. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02556-5 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. 42, 1526–1537 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu, P., Javidi-Parsijani, P., Atala, A. & Lu, B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’ genome editing. Nucleic Acids Res. 47, e99 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Indikova, I. & Indik, S. Highly efficient ‘hit-and-run’ genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts. Nucleic Acids Res. 48, 8178–8187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, G., Vandenberghe, L. H. & Wilson, J. M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    Article  PubMed  Google Scholar 

  • Pham, Q. et al. A facile chemical strategy to synthesize precise AAV-protein conjugates for targeted gene delivery. Mol. Ther. Oncol. 33, 201040 (2025).

    Article  Google Scholar 

  • Domenger, C. & Grimm, D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum. Mol. Genet. 28, R3–R14 (2019).

    Article  PubMed  Google Scholar 

  • Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, e2304378 (2024).

    Article  PubMed  Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard-Gagnepain, A. et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 124, 1221–1231 (2014).

    Article  PubMed  Google Scholar 

  • Seydel, C. Spotlight Therapeutics: making CRISPR deliver in vivo. Nat. Biotechnol. https://doi.org/10.1038/d41587-021-00011-9 (2021).

    Article  PubMed  Google Scholar