The old pea model in a new light: power of auxin over photoassimilates

the-old-pea-model-in-a-new-light:-power-of-auxin-over-photoassimilates
The old pea model in a new light: power of auxin over photoassimilates

References

  1. Dostál, R. Korelační vztahy u klíčních rostlin Papilionaceí. Rozpr. Čes. Akad. Tř. II 17, 1–44 (1908).

  2. Goebel, K. Einleitung in die experimentelle Morphologie der Pflanzen. Verlag von G.B. Teubner, Leipzig und Berlin. ISBN: 9781161283037 (1908).

  3. Ljung, K., Bhalerao, R. P. & Sandberg, G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465–474 (2001).

    Google Scholar 

  4. Snow, R. The correlative inhibition of the growth of axillary buds. Ann. Bot. 39, 841–859 (1925).

    Google Scholar 

  5. Thimann, K.V. & Skoog, F. Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc. Natl. Acad. Sci. USA 19, 714–716 (1933).

  6. Thimann, K.V. & Skoog, F. On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc. Natl. Acad. Sci. U S A 114, 317–339 (1934).

  7. Dostál, R. On integration in plants. Harvard University Press Cambridge. ISBN 9780674634503 (1967).

  8. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Google Scholar 

  9. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Google Scholar 

  10. Mason, M. G., Ross, J. J., Babst, B. A., Wienclaw, B. N. & Beveridge, C. A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. USA 111, 6092–6097 (2014).

    Google Scholar 

  11. Kebrom, T. H. & Mullet, J. E. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ. 38, 1471–1478 (2015).

    Google Scholar 

  12. Salam, B. B. et al. Etiolated stem branching is a result of systemic signaling associated with sucrose level. Plant Physiol. 175, 734–745 (2017).

    Google Scholar 

  13. Domagalska, M. A. & Leyser, O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12, 211–221 (2011).

    Google Scholar 

  14. Zhang, J. et al. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat. Commun. 11, 3508 (2020).

    Google Scholar 

  15. Mishra, B. S., Sharma, M. & Laxmi, A. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant. 174, e13546 (2022).

    Google Scholar 

  16. Dun, E. A., Brewer, P. B., Gillam, E. M. J. & Beveridge, C. A. Strigolactones and shoot branching: What is the real hormone and how does it work?. Plant Cell Physiol. 64, 967–983 (2023).

    Google Scholar 

  17. Snow, R. On the nature of correlative inhibition. New Phytol. 36, 283–300 (1937).

    Google Scholar 

  18. Ongaro, V., Bainbridge, K., Williamson, L. & Leyser, O. Interactions between axillary branches of arabidopsis. Mol. Plant 1, 388–400 (2008).

    Google Scholar 

  19. Balla, J. et al. Auxin flow-mediated competition between axillary buds to restore apical dominance. Sci. Rep. 6, 35955 (2016).

    Google Scholar 

  20. Patrick, J.W. & Wareing, P.F. Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L.: Effects remote from the site of hormone application. J. Exp. Bot. 29, 359–366 (1978).

  21. Yu, S. M., Lo, S. F. & Ho, T. H. D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 20, 844–857 (2015).

    Google Scholar 

  22. Kebrom, T. H. A growing stem inhibits bud outgrowth – The overlooked theory of apical dominance. Front Plant Sci. 8, 1847 (2017).

    Google Scholar 

  23. Cao, D. et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. Plant Physiol. 192, 1420–1434 (2023).

    Google Scholar 

  24. Zhao, Z. et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc. Natl. Acad. Sci. USA 119, e2121671119 (2022).

    Google Scholar 

  25. Balla, J., Blažková, J., Reinöhl, V. & Procházka, S. Involvement of auxin and cytokinins in initiation of growth of isolated pea buds. Plant Growth Reg. 38, 149–156 (2002).

    Google Scholar 

  26. Fichtner, F. et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J. 92, 611–623 (2017).

  27. Barbier, F. et al. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytol. 231, 1088–1104 (2021).

    Google Scholar 

  28. Sairanen, I. et al. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24, 4907–4916 (2012).

    Google Scholar 

  29. Mishra, B. S., Singh, M., Aggrawal, P. & Laxmi, A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4, e4502 (2009).

    Google Scholar 

  30. Bertheloot, J. et al. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. New Phytol. 225, 866–879 (2020).

    Google Scholar 

  31. Shinohara, N., Taylor, C. & Leyser, O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 11, e1001474 (2013).

    Google Scholar 

  32. Waldie, T. & Leyser, O. Cytokinin targets auxin transport to promote shoot branching. Plant Physiol. 177, 803–818 (2018).

    Google Scholar 

  33. Duan, J. et al. Strigolactone promotes cytokinin degradation through transcriptional activation of Cytokinin Oxidase/Dehydrogenase 9 in rice. Proc. Natl. Acad. Sci. USA 116, 14319–14324 (2019).

    Google Scholar 

  34. van Rongen, M., Bennett, T., Ticchiarelli, F. & Leyser, O. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet. 15, e1008023 (2019).

    Google Scholar 

  35. Zhang, L., Fang, W., Chen, F. & Song, A. The role of transcription factors in the regulation of plant shoot branching. Plants 11, 1997 (2022).

    Google Scholar 

  36. Su, C. et al. Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem. Proc. Natl. Acad. Sci. USA 120, e230858712 (2023).

    Google Scholar 

  37. Beveridge, C. A., Rameau, C. & Wijerathna-Yapa, A. Lessons from a century of apical dominance research. J. Exp. Bot. 74, 3903–3922 (2023).

    Google Scholar 

  38. Fichtner, F. et al. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. New Phytol. 244, 900–913 (2024).

    Google Scholar 

  39. Nahas, Z., Ticchiarelli, F., van Rongen, M., Dillon, J. & Leyser, O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. New Phytol. 242, 1084–1097 (2024).

    Google Scholar 

  40. Sachs, T. On the Determination of the Pattern of Vascular Tissue in Peas. Ann. Bot. 32, 781–790 (1968).

    Google Scholar 

  41. Li, C-J. & Bangerth, F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant. 106, 415–420 (1999).

  42. Prusinkiewicz, P. et al. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. USA 106, 17431–17436 (2009).

    Google Scholar 

  43. Crawford, S. et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913 (2010).

    Google Scholar 

  44. Balla, J., Kalousek, P., Reinöhl, V., Friml, J. & Procházka, S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571–577 (2011).

    Google Scholar 

  45. DeMason, D. A. & Polowick, P. L. Patterns of DR5::GUS expression in organs of pea (Pisum sativum). Int. J. Plant Sci. 70, 1–11 (2009).

    Google Scholar 

  46. Weijers, D. et al. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED dependent auxin transport in Arabidopsis. Plant Cell 17, 2517–2526 (2005).

    Google Scholar 

  47. Vernoux, T., Besnard, F. & Traas, J. Auxin at the shoot apical meristem. Cold Spring Harb. Perspect. Biol. 2, a001487 (2010).

    Google Scholar 

  48. Robert, H. S. et al. Local auxin sources orient the apical-basal axis in arabidopsis embryos. Curr. Biol. 23, 2506–2512 (2013).

    Google Scholar 

  49. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 15, 591–602 (2003).

    Google Scholar 

  50. Paciorek, T., Sauer, M., Balla, J., Wiśniewska, J. & Friml, J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006).

    Google Scholar 

Download references