Phytochemical composition and antimicrobial efficacy of Nigerian polyherbal formulations against antibiotic-resistant micro-organisms

phytochemical-composition-and-antimicrobial-efficacy-of-nigerian-polyherbal-formulations-against-antibiotic-resistant-micro-organisms
Phytochemical composition and antimicrobial efficacy of Nigerian polyherbal formulations against antibiotic-resistant micro-organisms

References

  1. Sanchez Armengol, E., Harmanci, M. & Laffleur, F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol. Res. 252, 126867. https://doi.org/10.1016/j.micres.2021.126867 (2021).

    Google Scholar 

  2. Schwarz, S., Loeffler, A. & Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet. Dermatol. (2016).

  3. Salam, M. A. et al. Antimicrobial resistance: a growing serious threat for global public health. In Healthcare. 11 (13), (2023). (1946).

  4. Bassetti, M. et al. Antimicrobial resistance in the next 30 years, humankind, Bugs and drugs: a visionary approach. Intensive Care Med. 43, 1464–1475 (2017).

    Google Scholar 

  5. Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 17 (1), 3 (2019).

    Google Scholar 

  6. Revie, N. M., Iyer, K. R., Robbins, N. & Cowen, L. E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 45, 70–76. https://doi.org/10.1016/j.mib.2018.02.005 (2018).

    Google Scholar 

  7. Sen, T. & Samanta, S. K. Medicinal plants, human health and biodiversity: a broad review. Biotechnol. Appl. Biodivers. 59–110 (2015).

  8. Izah, S. C. et al. Antimicrobial resistance and the role of herbal medicine: Challenges, opportunities, and future prospects. SpringerLink. https://link.springer.com/rwe/https://doi.org/10.1007/978-3-031-21973-3_71-1 (2023).

  9. Ladole, V. P., Deshpande, V. V., Chopade, A. G. & Manekar, A. V. Formulation and evaluation of herbal antibiotic tablets for infection management. Int. J. Novel Res. Devel. 9(5). https://www.ijnrd.org/papers/IJNRD2405710.pdf (2024).

  10. Renuka, A. Development of herbal-based antimicrobial agents: A comparative study. Int. J. Pharm. Sci. Res. 13 (2), 44–52 (2025).

    Google Scholar 

  11. Dev, S. K., Choudhury, P. K., Srivastava, R. & Sharma, M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed. Pharmacother. 111, 555–567 (2019).

    Google Scholar 

  12. Bodeker, G. & Ong, C. K. WHO Global Atlas of traditional, Complementary and Alternative Medicine Vol. 1 (World Health Organization, 2005).

  13. Kar, B., Chandar, B., Rachana, S. S., Bhattacharya, H. & Bhattacharya, D. Antibacterial and genotoxic activity of Bixa orellana, a folk medicine and food supplement against multidrug resistant clinical isolates. J. Herb. Med. 32, 100502. https://doi.org/10.1016/j.hermed.2021.100502 (2022).

    Google Scholar 

  14. Razavi, B. M., Rahbardar, G., Hosseinzadeh, H. & M., & A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother. Res. 35 (12), 6489–6513 (2021).

    Google Scholar 

  15. Amoo, S. O., Okorogbona, A. O. M., Plooy, D. & Venter, S. L. C. P., Sesamum indicum. In Medicinal spices and vegetables from Africa (pp. 549–579). Academic Press. (2017).

  16. Sobuj, M. K. et al. Qualitative and quantitative phytochemical analysis of brown seaweed sargassum polycystum collected from Bangladesh with its antioxidant activity determination. Food Chem. Adv. 4, 100565 (2024).

    Google Scholar 

  17. Sonibare, M. A., Onifade, T. R., Ogunlakin, A. D., Akinmurele, O. J. & Adebodun, S. A. Microscopic evaluation and antioxidant activity of Glyphaea brevis (Spreng.) Monach. (Family Tiliaceae). Free Rad Antioxid. 12 (1), 27–32 (2022).

    Google Scholar 

  18. Ofongo, R. T., Ohimain, E. I. & Iyayi, E. A. Qualitative and quantitative phytochemical screening of bitter and Neem leaves and their potential as antimicrobial growth promoter in poultry feed. Eur. J. Med. Plants 8 38–49 (2021)..

  19. Harbone, J. B. Phytochemical methods. London 49–188 (Chapman andHall, Ltd., 1973).

  20. Ibrahim, N. & Kebede, A. In vitro antibacterial activities of methanol and aqueous leave extracts of selected medicinal plants against human pathogenic bacteria. Saudi J. Biol. Sci. 27 (9), 2261–2268 (2020).

    Google Scholar 

  21. Arora, B. & Arora, D. R. Textbook of Microbiology. CBS Publishers and Distributors. New Delhi, pp. 41–42. (2007).

  22. Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966).

    Google Scholar 

  23. Zar, J. H. Biostatistical Analysis 4th edn (Prentice Hall Inc., 1999).

  24. Cowan, M. M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12 (4), 564–582 (1999).

    Google Scholar 

  25. Cushnie, T. P. T. & Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 26 (5), 343–356 (2005).

    Google Scholar 

  26. Okoye, F. B. C., Onubogu, C. C. & Udeh, N. E. Phytochemical screening and antimicrobial activity of Senna Alata leaves. Int. J. Pharm. Pharm. Sci. 6 (2), 392–395 (2014).

    Google Scholar 

  27. Ushie, O. A. et al. Estimation of total alkaloids, saponins, flavonoids, tannins and phenols in Thaumatococcus daniellii leaves. World j. pharm. med. res. 8 (4), 242–246 (2022).

    Google Scholar 

  28. Longbap, B. D., Ushie, O. A., Ogah, E., Kendenson, A. C. & Nyikyaa, J. T. Phytochemical screening and quantitative determination of phytochemicals in leaf extracts of Hannoa undulata. Int. J. Med. Plants Nat. Prod. 4 (2), 32–38 https://www.arcjournals.org/pdfs/ijmpnp/v4-i2/5.pdf (2018).

    Google Scholar 

  29. Garg, P. & Garg, R. Phytochemical screening and quantitative Estimation of total flavonoids of Ocimum sanctum in different solvent extracts. Pharma Innov. J. 8 (2), 16–21 https://www.thepharmajournal.com/archives/2019/vol8issue2/PartA/8-1-46-880.pdf (2019).

    Google Scholar 

  30. Akinyemi, K. O., Oladapo, O., Okwara, C. E., Ibe, C. C. & Fasure, K. A. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-microbial activity. J. Ethnopharmacol. 99 (2), 279–284. https://doi.org/10.1016/j.jep.2005.02.021 (2005).

    Google Scholar 

  31. Cowan, M. M. Plant products as antimicrobial agents. Clin. Microbiol. Revs. 12 (4), 564–582. https://doi.org/10.1128/CMR.12.4.564 (1999).

    Google Scholar 

  32. Olajuyigbe, O. O. & Afolayan, A. J. Antimicrobial activity of Acacia Mearnsii de Wild. Extracts against bacteria and fungi. Sci. Res. Essays. 7 (21), 1950–1958. https://doi.org/10.5897/SRE11.1943 (2012).

    Google Scholar 

  33. Nascimento, G. G. F., Locatelli, J., Freitas, P. C. & Silva, G. L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J. Microbiol. 31 (4), 247–256. https://doi.org/10.1590/S1517-83822000000400003 (2000).

    Google Scholar 

  34. Igbinosa, O. O., Igbinosa, E. O. & Aiyegoro, O. A. Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr. J. Pharm. Pharmacol. 3(2), 58–62.https://academicjournals.org/journal/AJPP/article-full-text-pdf/5A7D7C81201 (2009).

  35. Sharma, N. & Sharma, R. K. In vitro antifungal potency of Allium sativum and Zingiber officinale against Aspergillus flavus and Aspergillus Niger. Int. J. Pharm. Sci. Rev. Res. 5 (1), 149–152 https://globalresearchonline.net/journalcontents/v5-1/30.pdf (2010).

    Google Scholar 

  36. Okigbo, R. N. & Ogbonnaya, U. O. Antifungal effects of two tropical plant extracts (Ocimum gratissimum and Afromomum melegueta) on post-harvest yam (Dioscorea spp.) rot. Afr. J. Biotechnol. 5 (9), 727–731. https://doi.org/10.5897/AJB2006.000-3123 (2006).

    Google Scholar 

Download references