Monitoring biological effects of somatic cell genome editing

monitoring-biological-effects-of-somatic-cell-genome-editing
Monitoring biological effects of somatic cell genome editing
  • Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frangoul, H. et al. Exagamglogene autotemcel for severe sickle cell disease. N. Engl. J. Med. 390, 1649–1662 (2024).

    Article  PubMed  Google Scholar 

  • Locatelli, F. et al. Exagamglogene autotemcel for transfusion-dependent β-thalassemia. N. Engl. J. Med. 390, 1663–1676 (2024).

    Article  PubMed  Google Scholar 

  • Ottaviano, G. et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci. Transl. Med. 14, eabq3010 (2022).

    Article  PubMed  Google Scholar 

  • Hu, Y. et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 27, 2764–2772 (2021).

    Article  PubMed  Google Scholar 

  • Khoshandam, M., Soltaninejad, H., Hamidieh, A. A. & Hosseinkhani, S. CRISPR, CAR-T, and NK: current applications and future perspectives. Genes Dis. 11, 101121 (2024).

    Article  PubMed  Google Scholar 

  • Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229–233 (2019).

    Article  PubMed  Google Scholar 

  • Sinha, D. et al. Human iPSC modeling reveals mutation-specific responses to gene therapy in a genotypically diverse dominant maculopathy. Am. J. Hum. Genet. 107, 278–292 (2020). This study directly compares gene editing with gene augmentation within patient-derived iPS cell retinal models.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabra, M. et al. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J. Clin. Invest. 133, e171356 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, R. G. et al. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 147, 242–253 (2023).

    Article  PubMed  Google Scholar 

  • Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickar-Oliver, A. et al. Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of duchenne muscular dystrophy. Mol. Ther. 29, 3243–3257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  PubMed  Google Scholar 

  • Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce, E. A. et al. Gene editing for CEP290-associated retinal degeneration. N. Engl. J. Med. 390, 1972–1984 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Longhurst, H. J. et al. CRISPR–Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390, 432–441 (2024).

    Article  PubMed  Google Scholar 

  • Musunuru, K. et al. Patient-specific in vivo gene editing to treat a rare genetic disease. N. Engl. J. Med. 392, 2235–2243 (2025). This study describes the custom development and application of a gene-editing treatment to an infant with CPS1 deficiency within 8 months of diagnosis.

    Article  PubMed  PubMed Central  Google Scholar 

  • US FDA Center for Biologics Evaluation and Research (CEBR). Human gene therapy products incorporating human genome editing; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-products-incorporating-human-genome-editing (2024).

  • Torre, M. et al. Neuropathology of a case with fatal CAR T-cell-associated cerebral edema. J. Neuropathol. Exp. Neurol. 77, 877–882 (2018).

    Article  PubMed  Google Scholar 

  • Anliker, B. et al. Regulatory considerations for clinical trial applications with CRISPR-based medicinal products. CRISPR J. 5, 364–376 (2022).

    Article  PubMed  Google Scholar 

  • Adler, M. et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J. Am. Soc. Nephrol. 27, 1015–1028 (2016).

    Article  PubMed  Google Scholar 

  • Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173, 611–623.e17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mays, L. E. & Wilson, J. M. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol. Ther. 19, 16–27 (2011).

    Article  PubMed  Google Scholar 

  • Chew, W. L. et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakim, C. H. et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat. Commun. 12, 6769 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper, A. J., Tang, X. L. & Burnett, J. R. VERVE-101, a CRISPR base-editing therapy designed to permanently inactivate hepatic PCSK9 and reduce LDL-cholesterol. Expert Opin. Investig. Drugs 33, 753–756 (2024).

    Article  PubMed  Google Scholar 

  • van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article  PubMed  Google Scholar 

  • Saha, K. et al. The NIH Somatic Cell Genome Editing program. Nature 592, 195–204 (2021). This white paper describes the general goals and achievements of the SCGE Consortium during its first phase, including the development of a toolkit for data and protocol deposition.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article  PubMed  Google Scholar 

  • Suchy, F. P. et al. Genome engineering with Cas9 and AAV repair templates generates frequent concatemeric insertions of viral vectors. Nat. Biotechnol. 43, 204–213 (2025).

    Article  PubMed  Google Scholar 

  • Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. 42, 877–891 (2024).

    Article  PubMed  Google Scholar 

  • Guschin, D. Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  PubMed  Google Scholar 

  • Mashal, R. D., Koontz, J. & Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 9, 177–183 (1995).

    Article  PubMed  Google Scholar 

  • Yang, Z. et al. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res. 43, e59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P. & Pruett-Miller, S. M. A survey of validation strategies for CRISPR–Cas9 editing. Sci. Rep. 8, 888 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, N., Zhang, K., Sabbisetti, V., Shu, J. & Morizane, R. AAV for gene therapy drives a nephrotoxic response via NFκB in kidney organoids. Signal Transduct. Target. Ther. 10, 252 (2025). Human safety and efficacy profiling in kidney organoids reveals that a commonly used viral delivery system induces mitigatable NFκB-mediated nephrotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. et al. A multiple-capillary electrophoresis system for small-scale DNA sequencing and analysis. Nucleic Acids Res. 27, e36 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishy, C. E. et al. Genetics of cystogenesis in base-edited human organoids reveal therapeutic strategies for polycystic kidney disease. Cell Stem Cell 31, 537–553.e5 (2024). This study presents innovative human organoids with clinically relevant, gene-edited nonsense mutations as a proof of concept for base-edited gene therapy in PKD.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Liu, Y. & Han, R. BEAT: a python program to quantify base editing from sanger sequencing. CRISPR J. 2, 223–229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhidkov, I., Cohen, R., Geifman, N., Mishmar, D. & Rubin, E. CHILD: a new tool for detecting low-abundance insertions and deletions in standard sequence traces. Nucleic Acids Res. 39, e47 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).

    Article  PubMed  Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz, N. M. et al. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat. Biomed. Eng. 6, 463–475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz, N. M. & Freedman, B. S. CRISPR gene editing in the kidney. Am. J. Kidney Dis. 71, 874–883 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watry, H. L. et al. Rapid, precise quantification of large DNA excisions and inversions by ddPCR. Sci. Rep. 10, 14896 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dua, P. H. et al. Haplotype editing with CRISPR/Cas9 as a therapeutic approach for dominant-negative missense mutations in NEFL. Preprint at bioRxiv https://doi.org/10.1101/2024.12.20.629813 (2024).

  • Mardis, E. R. & Wilson, R. K. Tracing the evolution of sequencing into the era of genomic medicine. Nat. Rev. Genet. 26, 719–734 (2025).

    Article  PubMed  Google Scholar 

  • Giannoukos, G. et al. UDiTaSTM, a genome editing detection method for indels and genome rearrangements. BMC Genomics 19, 212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  PubMed  Google Scholar 

  • Rang, F. J., Kloosterman, W. P. & de Ridder, J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    Article  PubMed  Google Scholar 

  • Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    Article  PubMed  Google Scholar 

  • Chen, Z. et al. DNA translocation through an array of kinked nanopores. Nat. Mater. 9, 667–675 (2010).

    Article  PubMed  Google Scholar 

  • Chiba, K. et al. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 357, 1416–1420 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihry, R. J. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    Article  PubMed  Google Scholar 

  • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  PubMed  Google Scholar 

  • Harlander, S. et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat. Med. 23, 869–877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  PubMed  Google Scholar 

  • Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  PubMed  Google Scholar 

  • Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  PubMed  Google Scholar 

  • Duncan, C. N. et al. Hematologic cancer after gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 391, 1287–1301 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachdev, A. et al. Reversal of C9orf72 mutation-induced transcriptional dysregulation and pathology in cultured human neurons by allele-specific excision. Proc. Natl Acad. Sci. USA 121, e2307814121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg, L. H. et al. Safety, tolerability, and pharmacokinetics of antisense oligonucleotide BIIB078 in adults with C9orf72-associated amyotrophic lateral sclerosis: a phase 1, randomised, double blinded, placebo-controlled, multiple ascending dose study. Lancet Neurol. 23, 901–912 (2024).

    Article  PubMed  Google Scholar 

  • Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cradick, T. J., Qiu, P., Lee, C. M., Fine, E. J. & Bao, G. COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol. Ther. Nucleic Acids 3, e214 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Aqil, M., Atasoy, S., Kringelbach, M. L. & Hindriks, R. Graph neural fields: a framework for spatiotemporal dynamical models on the human connectome. PLoS Comput. Biol. 17, e1008310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR–Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    Article  PubMed  Google Scholar 

  • Cameron, P. et al. Mapping the genomic landscape of CRISPR–Cas9 cleavage. Nat. Methods 14, 600–606 (2017).

    Article  PubMed  Google Scholar 

  • Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020). CHANGE-seq establishes a streamlined, high-throughput, biochemical method to define the genome-wide activity of CRISPR genome editors, by selective sequencing of editor-modified genomic DNA.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petri, K. et al. Global-scale CRISPR gene editor specificity profiling by ONE-seq identifies population-specific, variant off-target effects. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438458 (2021).

  • Lazzarotto, C. R. et al. Sensitive and unbiased genome-wide profiling of base-editor-induced off-target activity using CHANGE-seq-BE. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02948-7 (2026).

  • Ramadoss, G. N. et al. Characterizing and controlling CRISPR repair outcomes in nondividing human cells. Nat. Commun. 16, 9883 (2025). This study compares derived neurons to parental iPS cells and reveals differences in reparative responses to Cas9-induced DNA damage, raising opportunities to direct towards specific editing outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 15058 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  PubMed  Google Scholar 

  • Wienert, B., Wyman, S. K., Yeh, C. D., Conklin, B. R. & Corn, J. E. CRISPR off-target detection with DISCOVER-seq. Nat. Protoc. 15, 1775–1799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, S.-Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20, 898–907 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, S.-Q. et al. Genome-wide detection of CRISPR editing in vivo using GUIDE-tag. Nat. Commun. 13, 437 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-seq. Cell Stem Cell 28, 1136–1147.e5 (2021).

    Article  PubMed  Google Scholar 

  • Kwon, J. et al. TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nat. Commun. 13, 7975 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cromer, M. K. et al. Comparative analysis of CRISPR off-target discovery tools following ex vivo editing of CD34+ hematopoietic stem and progenitor cells. Mol. Ther. 31, 1074–1087 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cancellieri, S. et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat. Genet. 55, 34–43 (2023).

    Article  PubMed  Google Scholar 

  • Li, M. & Izpisua Belmonte, J. C. Organoids – preclinical models of human disease. N. Engl. J. Med. 380, 569–579 (2019).

    Article  PubMed  Google Scholar 

  • US FDA. Roadmap to reducing animal testing in preclinical safety studies. https://www.fda.gov/media/186092/download (2025).

  • Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  PubMed  Google Scholar 

  • Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  PubMed  Google Scholar 

  • Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  PubMed  Google Scholar 

  • Geurts, M. H. et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 26, 503–510.e7 (2020). This state-of-the art study demonstrates how a cystic fibrosis intestinal organoid biobank can be applied to profile base editing on-target and off-target biological effects.

    Article  PubMed  Google Scholar 

  • Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H. & Kim, J.-S. Unexpected CRISPR on-target effects. Nat. Biotechnol. 36, 703–704 (2018).

    Article  PubMed  Google Scholar 

  • Boutin, J. et al. ON-Target adverse events of CRISPR–Cas9 nuclease: more chaotic than expected. CRISPR J. 5, 19–30 (2022).

    Article  PubMed  Google Scholar 

  • Friskes, A. et al. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res 50, 9930–9947 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baruteau, J., Waddington, S. N., Alexander, I. E. & Gissen, P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J. Inherit. Metab. Dis. 40, 497–517 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020). The authors report the development of a homology-independent CRISPR method to efficiently generate knock-in organoids of both intestinal and hepatocyte lineages for mechanistic investigations.

    Article  PubMed  Google Scholar 

  • Velazquez, J. J. et al. Gene regulatory network analysis and engineering directs development and vascularization of multilineage human liver organoids. Cell Syst. 12, 41–55.e11 (2021).

    Article  PubMed  Google Scholar 

  • Zhang, Y. et al. A new 3D cultured liver chip and real-time monitoring system based on microfluidic technology. Micromachines 11, 1118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, A. Y. et al. Reproducibility and robustness of a liver microphysiological system PhysioMimix LC12 under varying culture conditions and cell type combinations. Bioeng. 10, 1195 (2023).

    Google Scholar 

  • Fu, J., Qiu, H. & Tan, C. S. Microfluidic liver-on-a-chip for preclinical drug discovery. Pharmaceutics 15, 1300 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda, M., Moghadam, F., Ebrahimkhani, M. R. & Kiani, S. Engineered CRISPR systems for next generation gene therapies. ACS Synth. Biol. 6, 1614–1626 (2017).

    Article  PubMed  Google Scholar 

  • Hernandez-Gordillo, V., Casolaro, T. C., Ebrahimkhani, M. R. & Kiani, S. Multicellular systems to translate somatic cell genome editors to humans. Curr. Opin. Biomed. Eng. 16, 72–81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 95, 914–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  PubMed  Google Scholar 

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536, 238 (2016).

    Article  PubMed  Google Scholar 

  • Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  PubMed  Google Scholar 

  • Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. R. et al. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nat. Commun. 13, 7918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka, K. et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. Sci. Adv. 8, eabq0866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. et al. Detection of PKD1 and PKD2 somatic variants in autosomal dominant polycystic kidney cyst epithelial cells by whole-genome sequencing. J. Am. Soc. Nephrol. 32, 3114–3129 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz, N. M. et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater. 16, 1112–1119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. et al. Adult human kidney organoids originate from CD24+ cells and represent an advanced model for adult polycystic kidney disease. Nat. Genet. 54, 1690–1701 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  PubMed  Google Scholar 

  • Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanslambrouck, J. M. et al. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat. Commun. 13, 5943 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Digby, J. L. M., Vanichapol, T., Przepiorski, A., Davidson, A. J. & Sander, V. Evaluation of cisplatin-induced injury in human kidney organoids. Am. J. Physiol. Ren. Physiol. 318, F971–F978 (2020).

    Article  Google Scholar 

  • Gupta, N. et al. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci. Transl. Med. 14, eabj4772 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Taguchi, K. et al. Cyclin G1 induces maladaptive proximal tubule cell dedifferentiation and renal fibrosis through CDK5 activation. J. Clin. Invest. 132, e158096 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, E. et al. Profiling APOL1 nephropathy risk variants in genome-edited kidney organoids with single-cell transcriptomics. Kidney 360, 203–215 (2020).

    Article  Google Scholar 

  • Juliar, B. A. et al. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep. 43, 114310 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson, R. et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl Acad. Sci. USA 111, E2130–E2139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Helms, L. et al. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight 6, e154882 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    Article  PubMed  Google Scholar 

  • van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-Derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Article  Google Scholar 

  • Grambergs, R. C., Mondal, K. & Mandal, N. Inflammatory ocular diseases and sphingolipid signaling. Adv. Exp. Med. Biol. 1159, 139–152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanany, M., Rivolta, C. & Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl Acad. Sci. USA 117, 2710–2716 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte, J. W. M. & Daldrup-Link, H. E. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 289, 604–615 (2018).

    Article  PubMed  Google Scholar 

  • Berg, E. et al. Total-body PET and highly stable chelators together enable meaningful 89Zr-antibody PET studies up to 30 days after injection. J. Nucl. Med. 61, 453–460 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, J., Lee, C. C. I., Sutcliffe, J. L., Cherry, S. R. & Tarantal, A. F. Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol. Imaging 7, 1–11 (2008).

    Article  PubMed  Google Scholar 

  • Tarantal, A. F. et al. Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol. Imaging Biol. 14, 197–204 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarantal, A. F., Lee, C. C. I., Kukis, D. L. & Cherry, S. R. Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys. PLoS ONE 8, e77148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte, J. W. M. Direct versus indirect labeling for chimeric antigen receptor T-cell tracking using PET. Radiology 310, e240241 (2024).

    Article  PubMed  Google Scholar 

  • Yuan, Y. et al. In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nat. Biomed. Eng. 6, 658–666 (2022). This study introduces a technique for label-free tracking of transplanted stem cells in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  • Badawi, R. D. et al. First human imaging studies with the EXPLORER Total-Body PET scanner. J. Nucl. Med. 60, 299–303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry, S. R. et al. Total-body imaging: Transforming the role of positron emission tomography. Sci. Transl. Med. 9, eaaf6169 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason, E. E. et al. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Sci. Rep. 11, 13456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Su, Y., Lin, M. Z. & Ronald, J. A. Brightening up biology: advances in luciferase systems for in vivo imaging. ACS Chem. Biol. 16, 2707–2718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, S. et al. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br. J. Cancer 121, 922–933 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. et al. PNCK depletion inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells in vitro and in vivo. J. Cancer 10, 6925–6932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mou, H. et al. CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling. Genome Med 11, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S.-H. et al. ABL genomic editing sufficiently abolishes oncogenesis of human chronic myeloid leukemia cells in vitro and in vivo. Cancers 12, 1399 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Meca-Cortés, O. et al. CRISPR/Cas9-mediated knockin application in cell therapy: a non-viral procedure for bystander treatment of glioma in mice. Mol. Ther. Nucleic Acids 8, 395–403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois, V. P. et al. Safe harbor targeted CRISPR–Cas9 tools for molecular-genetic imaging of cells in living subjects. CRISPR J. 1, 440–449 (2018).

    Article  PubMed  Google Scholar 

  • Kelly, J. J. et al. Safe harbor-targeted CRISPR–Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. Sci. Adv. 7, eabc3791 (2021). This study demonstrates a CRISPR approach for safe-harbour integration of large multimodal imaging reporter constructs, enabling a viral-free, non-invasive strategy for longitudinal tracking of genome-edited cells in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, P.-F. et al. CRISPR/Cas9-based generation of a recombinant double-reporter pseudorabies virus and its characterization in vitro and in vivo. Vet. Res. 52, 95 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Uyar, O. et al. A novel bioluminescent herpes simplex virus 1 for in vivo monitoring of herpes simplex encephalitis. Sci. Rep. 11, 18688 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau, C.-H., Ho, J. W.-T., Lo, P. K. & Tin, C. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol. Ther. Nucleic Acids 16, 637–649 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, S.-Y. et al. A luciferase reporter mouse model to optimize in vivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Mol. Ther. 31, 1159–1166 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Amoasii, L. et al. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat. Commun. 10, 4537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, Y. et al. A bioluminescence reporter mouse strain for in vivo imaging of CD8+ T cell localization and function. Biochem. Biophys. Res. Commun. 581, 12–19 (2021).

    Article  PubMed  Google Scholar 

  • Tarantal, A. F. & Lee, C. C. I. Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum. Gene Ther. 21, 143–148 (2010). This study uses BLI to monitor long-term reporter gene expression in rhesus monkeys after prenatal intrathoracic administration.

    Article  PubMed  Google Scholar 

  • Tarantal, A. F., Lee, C. C. I., Martinez, M. L., Asokan, A. & Samulski, R. J. Systemic and persistent muscle gene expression in rhesus monkeys with a liver de-targeted adeno-associated virus vector. Hum. Gene Ther. 28, 385–391 (2017). This study demonstrates liver detargeting with an AAV9 variant after intravenous administration to infant rhesus monkeys with BLI monitoring expression for ~2 years post transfer.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh, Y. et al. An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. Nat. Chem. Biol. 15, 433–436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarantal, A. F., Lee, C. C. I., Jimenez, D. F. & Cherry, S. R. Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum. Gene Ther. 17, 1254–1261 (2006).

    Article  PubMed  Google Scholar 

  • Tarantal, A. F. & Skarlatos, S. I. Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases: an NHLBI resource for the gene therapy community. Hum. Gene Ther. 23, 1130–1135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte, J. W. M. & Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004).

    Article  PubMed  Google Scholar 

  • Chapelin, F. et al. Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci. Rep. 7, 17748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois, V. P., Sehl, O. C., Foster, P. J. & Ronald, J. A. Visualizing CAR-T cell immunotherapy using 3 Tesla fluorine-19 MRI. Mol. Imaging Biol. 24, 298–308 (2022).

    Article  PubMed  Google Scholar 

  • Bulte, J. W. M. Chimeric antigen receptor T-cell immunotherapy induces transient tumor hyperoxia instead of hypoxia. Radio. Imaging Cancer 3, e200135 (2021).

    Article  Google Scholar 

  • Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007). This study presents a non-metallic man-made reporter gene that can be detected directly.

    Article  PubMed  Google Scholar 

  • Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci. Rep. 8, 4638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam, B. et al. Imaging of adeno-associated viral capsids for purposes of gene editing using CEST NMR/MRI. Magn. Reson. Med. 92, 792–806 (2024). This study harnesses the outwardly facing amino acids on AAV capsids as an endogenous source of CEST-MRI contrast to quantify the delivery of gene-editing machinery via AAV particles to solid tissue.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlman, O. et al. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning. Nat. Biomed. Eng. 6, 648–657 (2022).

    Article  PubMed  Google Scholar 

  • Bulte, J. W. M., Wang, C. & Shakeri-Zadeh, A. In vivo cellular magnetic imaging: labeled vs. unlabeled cells. Adv. Funct. Mater. 32, 2207626 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte, J. W. M. et al. Quantitative ‘hot spot’ imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1, 91–97 (2015). This study presents quantitative MPI/MRI cell tracking.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte, J. W. M. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv. Drug Deliv. Rev. 138, 293–301 (2019).

    Article  PubMed  Google Scholar 

  • Shakeri-Zadeh, A. et al. Fast dynamic whole-body in vivo cytometry using magnetic particle imaging. Preprint at bioRxiv https://doi.org/10.1101/2025.09.11.675624 (2025).

  • Kiru, L. et al. In vivo imaging of nanoparticle-labeled CAR T cells. Proc. Natl Acad. Sci. USA 119, e2102363119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakeri-Zadeh, A. et al. MPI of SuperSPIO20-labeled ALS patient-derived, genome-edited iPSCs and iPSC-derived motor neurons. Int. J. Mag. Part. Imag. 8, 2203003 (2022).

    Google Scholar 

  • Rossano, S. et al. Imaging the fetal nonhuman primate brain with SV2A positron emission tomography (PET). Eur. J. Nucl. Med. Mol. Imaging 49, 3679–3691 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng, G. et al. P2RX7 promotes osteosarcoma progression and glucose metabolism by enhancing c-Myc stabilization. J. Transl. Med. 21, 132 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marciano, S. et al. Combining CRISPR–Cas9 and brain imaging to study the link from genes to molecules to networks. Proc. Natl Acad. Sci. Usa. 119, e2122552119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang, I. et al. A radioactive CRISPR interference system using 89Zr-labeled LbCas12a. J. Control. Release 365, 703–715 (2024).

    Article  PubMed  Google Scholar 

  • Herhaus, P. et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica 101, 932–940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrominski, J. W. et al. CRISPR/Cas9-mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl. Med 9, 1203–1217 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Y. et al. CRISPR/Cas9-edited triple-fusion reporter gene imaging of dynamics and function of transplanted human urinary-induced pluripotent stem cell-derived cardiomyocytes. Eur. J. Nucl. Med. Mol. Imaging 48, 708–720 (2021).

    Article  PubMed  Google Scholar 

  • Shalaby, N. et al. A Human-derived Dual MRI/PET reporter gene system with high translational potential for cell tracking. Mol. Imaging Biol. 24, 341–351 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulhankova, K. et al. Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo. Nat. Commun. 14, 8051 (2023). This study uses chest CT to identify regions of deposited base editing reagents.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang, S.-Q. et al. AAV5 delivery of CRISPR/Cas9 mediates genome editing in the lungs of young rhesus monkeys. Hum. Gene Ther. 35, 814–824 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2016).

    Article  PubMed  Google Scholar 

  • Zeng, J. et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Cell Stem Cell 32, 191–208.e11 (2025).

    Article  PubMed  Google Scholar 

  • Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582.e20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman, B. S. Physiology assays in human kidney organoids. Am. J. Physiol. Ren. Physiol. 322, F625–F638 (2022).

    Article  Google Scholar 

  • Pamies, D. et al. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep. 19, 1041 (2024).

    Article  Google Scholar 

  • Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  PubMed  Google Scholar 

  • Chen, Z. et al. A fluorescent reporter mouse for in vivo assessment of genome editing with diverse cas nucleases and prime editors. CRISPR J. 6, 570–582 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard, L. H. et al. Fast-seq: a simple method for rapid and inexpensive validation of packaged single-stranded adeno-associated viral genomes in academic settings. Hum. Gene Ther. Methods 30, 195–205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizki-Safitri, A. et al. Live functional assays reveal longitudinal maturation of transepithelial transport in kidney organoids. Front. Cell Dev. Biol. 10, 978888 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt, A. C. et al. Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Sci. Transl. Med. 14, eabn1252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyer, B. et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 10, 642–654 (2018).

    Article  Google Scholar 

  • Saha, K. Accounting for diversity in the design of CRISPR-based therapeutic genome editing. Nat. Genet. 55, 6–7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Samimi, K. et al. In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. Biomed. Opt. Express 13, 3476–3492 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun. Biol. 4, 524 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, J. B. et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. Mol. Ther. Methods Clin. Dev. 19, 320–329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLuca, S. & Bursac, N. CRISPR library screening in cultured cardiomyocytes. Methods Mol. Biol. 2485, 1–13 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Li, B., Zhan, R.-Z., Rao, L. & Bursac, N. Exercise mimetics and JAK inhibition attenuate IFN-γ-induced wasting in engineered human skeletal muscle. Sci. Adv. 7, eabd9502 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfer, A. & Bursac, N. Frame-hydrogel methodology for engineering highly functional cardiac tissue constructs. Methods Mol. Biol. 2158, 171–186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, M. et al. Redirecting vesicular transport to improve nonviral delivery of molecular cargo. Adv. Biosyst. 4, e2000059 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon, J. B., Vankara, A., Ettyreddy, A. R., Bohning, J. D. & Gersbach, C. A. Myogenic progenitor cell lineage specification by CRISPR/Cas9-based transcriptional activators. Stem Cell Rep. 14, 755–769 (2020).

    Article  Google Scholar 

  • Samelson, A. J. et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat. Cell Biol. 24, 24–34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Bermejo, J. A. et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci. Transl. Med. 13, eabf7872 (2021).

    Article  PubMed  Google Scholar 

  • Qian, T. et al. Label-free imaging for quality control of cardiomyocyte differentiation. Nat. Commun. 12, 4580 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y. & Tsai, S. Q. Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol. 19, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Métais, J.-Y. et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 3, 3379–3392 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, M. et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat. Genet. 51, 1252–1262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong, J. O. et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat. Commun. 12, 4087 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulcaen, M. et al. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep. Med. 5, 101544 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S. et al. Molecular imaging reveals a high degree of cross-seeding of spontaneous metastases in a novel mouse model of synchronous bilateral breast cancer. Mol. Imaging Biol. 24, 104–114 (2022).

    Article  PubMed  Google Scholar 

  • Srivastava, A. K. et al. Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 289, 96–102 (2017).

    Article  PubMed  Google Scholar 

  • Shalaby, N. et al. Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells in vivo. Nanoscale 15, 3408–3418 (2023).

    Article  PubMed  Google Scholar 

  • Williams, R. J. et al. Dual magnetic particle imaging and akaluc bioluminescence imaging for tracking cancer cell metastasis. Tomography 9, 178–194 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, T. et al. In Vivo Micro-CT imaging of human mesenchymal stem cells labeled with Gold-Poly-L-Lysine Nanocomplexes. Adv. Funct. Mater. 27, 1604213 (2017).

    Article  PubMed  Google Scholar 

  • Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyström, N. N., Yip, L. C. M., Carson, J. J. L., Scholl, T. J. & Ronald, J. A. Development of a human photoacoustic imaging reporter gene using the clinical dye indocyanine green. Radio. Imaging Cancer 1, e190035 (2019).

    Article  Google Scholar 

  • Emami-Shahri, N. et al. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat. Commun. 9, 1081 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalaby, N. et al. Imaging CAR-NK cells targeted to HER2 ovarian cancer with human sodium-iodide symporter-based positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 51, 3176–3190 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyström, N. N. et al. A genetically encoded magnetic resonance imaging reporter enables sensitive detection and tracking of spontaneous metastases in deep tissues. Cancer Res 83, 673–685 (2023).

    Article  PubMed  Google Scholar