Exosomes derived from ADSCs suppress the fibrosis process of derma in secondary lymphedema

exosomes-derived-from-adscs-suppress-the-fibrosis-process-of-derma-in-secondary-lymphedema
Exosomes derived from ADSCs suppress the fibrosis process of derma in secondary lymphedema

References

  1. Sleigh, B. C. & Manna, B. In: StatPearls (StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., 2023).

  2. Brown, S., Dayan, J. H., Kataru, R. P. & Mehrara, B. J. The vicious circle of stasis, inflammation, and fibrosis in lymphedema. Plast. Reconstr. Surg. 151, 330e–341e. https://doi.org/10.1097/prs.0000000000009866 (2023).

    Google Scholar 

  3. Grada, A. A. & Phillips, T. J. Lymphedema: Pathophysiology and clinical manifestations. J. Am. Acad. Dermatol. 77, 1009–1020. https://doi.org/10.1016/j.jaad.2017.03.022 (2017).

    Google Scholar 

  4. Jia, L. et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet. Public health 5, e661–e671. https://doi.org/10.1016/s2468-2667(20)30185-7 (2020).

    Google Scholar 

  5. Thompson, B., Gaitatzis, K., de Janse Jonge, X., Blackwell, R. & Koelmeyer, L. A. Manual lymphatic drainage treatment for lymphedema: A systematic review of the literature. J. Cancer Survivorship Res. Practice 15, 244–258. https://doi.org/10.1007/s11764-020-00928-1 (2021).

    Google Scholar 

  6. Rafn, B. S. et al. Examining the efficacy of treatments for arm lymphedema in breast cancer survivors: An overview of systematic reviews with meta-analyses. EClinicalMedicine 67, 102397. https://doi.org/10.1016/j.eclinm.2023.102397 (2024).

    Google Scholar 

  7. Cheng, G. et al. Clinical application of magnetic resonance lymphangiography in the vascularized omental lymph nodes transfer with or without lymphaticovenous anastomosis for cancer-related lower extremity lymphedema. Quant. Imaging Med. Surg. 13, 5945–5957. https://doi.org/10.21037/qims-22-1443 (2023).

    Google Scholar 

  8. Shah, C., Asha, W. & Vicini, F. Current diagnostic tools for breast cancer-related lymphedema. Curr. Oncol. Rep. 25, 151–154. https://doi.org/10.1007/s11912-023-01357-w (2023).

    Google Scholar 

  9. Itoh, F. & Watabe, T. TGF-β signaling in lymphatic vascular vessel formation and maintenance. Front. Physiol. 13, 1081376. https://doi.org/10.3389/fphys.2022.1081376 (2022).

    Google Scholar 

  10. Sano, M. et al. Potential role of transforming growth factor-beta 1/Smad signaling in secondary lymphedema after cancer surgery. Cancer Sci. 111, 2620–2634. https://doi.org/10.1111/cas.14457 (2020).

    Google Scholar 

  11. Brown, S. et al. Topical captopril: A promising treatment for secondary lymphedema. Transl. Res. J. Lab. Clin. Med. 257, 43–53. https://doi.org/10.1016/j.trsl.2023.01.005 (2023).

    Google Scholar 

  12. Shimizu, Y., Che, Y. & Murohara, T. Therapeutic lymphangiogenesis is a promising strategy for secondary lymphedema. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24097774 (2023).

    Google Scholar 

  13. Alderfer, L., Russo, E., Archilla, A., Coe, B. & Hanjaya-Putra, D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 35, e21498. https://doi.org/10.1096/fj.202002426RR (2021).

    Google Scholar 

  14. Ehyaeeghodraty, V. et al. Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 8, 445–451. https://doi.org/10.1016/j.jvsv.2019.10.019 (2020).

    Google Scholar 

  15. Schaverien, M. V. & Aldrich, M. B. New and emerging treatments for lymphedema. Semin. Plast. Surg. 32, 48–52. https://doi.org/10.1055/s-0038-1632403 (2018).

    Google Scholar 

  16. Mahé, P. et al. Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum. Bioinformatics 30, 1280–1286. https://doi.org/10.1093/bioinformatics/btu022 (2014).

    Google Scholar 

  17. Hu, L. R. & Pan, J. Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J. Stem Cells 12, 612–620. https://doi.org/10.4252/wjsc.v12.i7.612 (2020).

    Google Scholar 

  18. Qian, H. et al. Cancer stemness and metastatic potential of the novel tumor cell line K3: An inner mutated cell of bone marrow-derived mesenchymal stem cells. Oncotarget 8, 39522–39533. https://doi.org/10.18632/oncotarget.17133 (2017).

    Google Scholar 

  19. Sun, Z. et al. The role and mechanism of miR-374 regulating the malignant transformation of mesenchymal stem cells. Am. J. Transl. Res. 10, 3224–3232 (2018).

    Google Scholar 

  20. Ren, Y. & Zhang, H. Emerging role of exosomes in vascular diseases. Front. Cardiovasc. Med. 10, 1090909. https://doi.org/10.3389/fcvm.2023.1090909 (2023).

    Google Scholar 

  21. Chen, H. et al. Exosomes, a new star for targeted delivery. Front. Cell Dev. Biol. 9, 751079. https://doi.org/10.3389/fcell.2021.751079 (2021).

    Google Scholar 

  22. An, Y. et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 54, e12993. https://doi.org/10.1111/cpr.12993 (2021).

    Google Scholar 

  23. Shen, K. et al. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biol. Med. 165, 54–66. https://doi.org/10.1016/j.freeradbiomed.2021.01.023 (2021).

    Google Scholar 

  24. Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science https://doi.org/10.1126/science.aau6977 (2020).

    Google Scholar 

  25. Li, B. et al. Delivery of vascular endothelial growth factor (VEGFC) via engineered exosomes improves lymphedema. Ann. Transl. Med. 8, 1498. https://doi.org/10.21037/atm-20-6605 (2020).

    Google Scholar 

  26. Ting, Z. et al. Exosomes derived from human umbilical cord Wharton’s jelly mesenchymal stem cells ameliorate experimental lymphedema. Clin. Transl. Med. 11, e384. https://doi.org/10.1002/ctm2.384 (2021).

    Google Scholar 

  27. Choi, S. H. et al. Oral transforming growth factor-beta receptor 1 inhibitor vactosertib promotes osteosarcoma regression by targeting tumor proliferation and enhancing anti-tumor immunity. Cancer Commun. 44, 884–888. https://doi.org/10.1002/cac2.12589 (2024).

    Google Scholar 

  28. Park, S. A. et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell. Mol. Life Sci. CMLS 72, 2023–2039. https://doi.org/10.1007/s00018-014-1798-6 (2015).

    Google Scholar 

  29. Yoon, S. H. et al. EW-7197, a transforming growth factor-beta type I receptor kinase inhibitor, ameliorates acquired lymphedema in a mouse tail model. Lymphat. Res. Biol. 18, 433–438. https://doi.org/10.1089/lrb.2018.0070 (2020).

    Google Scholar 

  30. Alasmari, W. A. et al. Molecular and cellular mechanisms involved in adipose-derived stem cell and their extracellular vesicles in an experimental model of cardio- renal syndrome type 3: Histological and biochemical study. Tissue Cell 77, 101842. https://doi.org/10.1016/j.tice.2022.101842 (2022).

    Google Scholar 

  31. Yang, X. X., Sun, C., Wang, L. & Guo, X. L. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release Off. J. Control. Release Soc. 308, 119–129. https://doi.org/10.1016/j.jconrel.2019.07.021 (2019).

    Google Scholar 

  32. Liang, Y. et al. Adipose mesenchymal stromal cell-derived exosomes carrying MiR-122–5p antagonize the inhibitory effect of dihydrotestosterone on hair follicles by targeting the TGF-β1/SMAD3 signaling pathway. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24065703 (2023).

    Google Scholar 

  33. Yang, G. et al. Circ-CSPP1 knockdown suppresses hepatocellular carcinoma progression through miR-493-5p releasing-mediated HMGB1 downregulation. Cell. Signal. 86, 110065. https://doi.org/10.1016/j.cellsig.2021.110065 (2021).

    Google Scholar 

  34. Wei, W. F. et al. Cancer-associated fibroblast-derived PAI-1 promotes lymphatic metastasis via the induction of EndoMT in lymphatic endothelial cells. J. Exp. Clin. Cancer Res. CR 42, 160. https://doi.org/10.1186/s13046-023-02714-0 (2023).

    Google Scholar 

  35. Nikolaev, V. V. et al. An evaluation of lymphedema using optical coherence tomography: A rat limb model approach. Diagnostics https://doi.org/10.3390/diagnostics13172822 (2023).

    Google Scholar 

  36. Harb, A. A. et al. Creation of a rat lower limb lymphedema model. Ann. Plast. Surg. 85, S129-s134. https://doi.org/10.1097/sap.0000000000002323 (2020).

    Google Scholar 

  37. Yang, C. Y. et al. Developing a lower limb lymphedema animal model with combined lymphadenectomy and low-dose radiation. Plast. Reconstr. Surg. Glob. Open 2, e121. https://doi.org/10.1097/gox.0000000000000064 (2014).

    Google Scholar 

  38. Ahmed, S. et al. Murine hindlimb lymphedema model: optimization and evaluation of radiation. Breast Cancer Res. BCR 27, 168. https://doi.org/10.1186/s13058-025-02112-8 (2025).

    Google Scholar 

  39. Hadrian, R. & Palmes, D. Animal models of secondary lymphedema: New approaches in the search for therapeutic options. Lymphat. Res. Biol. 15, 2–16. https://doi.org/10.1089/lrb.2016.0015 (2017).

    Google Scholar 

  40. Khan, N. et al. Effects of diet-induced obesity in the development of lymphedema in the animal model: A literature review. Obes. Res. Clin. Pract. 16, 197–205. https://doi.org/10.1016/j.orcp.2022.05.003 (2022).

    Google Scholar 

  41. Morita, Y. et al. Establishment of a simple, reproducible, and long-lasting hind limb animal model of lymphedema. Plast. Reconstr. Surg. Glob. Open 11, e5243. https://doi.org/10.1097/gox.0000000000005243 (2023).

    Google Scholar 

  42. Hayashida, K. et al. Adipose-derived stem cells and vascularized lymph node transfers successfully treat mouse hindlimb secondary lymphedema by early reconnection of the lymphatic system and lymphangiogenesis. Plast. Reconstr. Surg. 139, 639–651. https://doi.org/10.1097/prs.0000000000003110 (2017).

    Google Scholar 

  43. Stuckey, J. E., Makhija, S. D., Reimer, D. C. & Eswaraka, J. R. Effects of different grades of carbon dioxide on euthanasia of mice (Mus musculus). J. Am. Assoc. Lab. Animal Sci. JAALAS 62, 430–437. https://doi.org/10.30802/aalas-jaalas-23-000023 (2023).

    Google Scholar 

  44. Ruliffson, B. N. K. & Whittington, C. F. Regulating lymphatic vasculature in fibrosis: Understanding the biology to improve the modeling. Adv. Biol. https://doi.org/10.1002/adbi.202200158 (2023).

    Google Scholar 

  45. Brix, B. et al. Biology of Lymphedema. Biology https://doi.org/10.3390/biology10040261 (2021).

    Google Scholar 

  46. Duhon, B. H., Phan, T. T., Taylor, S. L., Crescenzi, R. L. & Rutkowski, J. M. Current mechanistic understandings of lymphedema and lipedema: Tales of fluid, fat, and fibrosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23126621 (2022).

    Google Scholar 

  47. Nelson, T. S. et al. Lymphatic remodelling in response to lymphatic injury in the hind limbs of sheep. Nat. Biomed. Eng. 4, 649–661. https://doi.org/10.1038/s41551-019-0493-1 (2020).

    Google Scholar 

  48. Zhou, H., Wang, M., Hou, C., Jin, X. & Wu, X. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn. J. Clin. Oncol. 41, 841–846. https://doi.org/10.1093/jjco/hyr055 (2011).

    Google Scholar 

  49. Wu, G. et al. Rhesus monkey is a new model of secondary lymphedema in the upper limb. Int. J. Clin. Exp. Pathol. 7, 5665–5673 (2014).

    Google Scholar 

  50. Hadamitzky, C. & Pabst, R. Acquired lymphedema: An urgent need for adequate animal models. Can. Res. 68, 343–345. https://doi.org/10.1158/0008-5472.Can-07-2454 (2008).

    Google Scholar 

  51. Campos, J. L. et al. Popliteal vascular lymph node resection in the rabbit hindlimb for secondary lymphedema induction. J. Visual. Exp. JoVE https://doi.org/10.3791/64576 (2022).

    Google Scholar 

  52. Hong, P., Yang, H., Wu, Y., Li, K. & Tang, Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res. Ther. 10, 242. https://doi.org/10.1186/s13287-019-1358-y (2019).

    Google Scholar 

  53. Lotfy, A., AboQuella, N. M. & Wang, H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res. Ther. 14, 66. https://doi.org/10.1186/s13287-023-03287-7 (2023).

    Google Scholar 

  54. Erratum to delivery of vascular endothelial growth factor (VEGFC) via engineered exosomes improves lymphedema. Ann. Transl. Med. 9, 1281, https://doi.org/10.21037/atm-2021-22 (2021).

  55. Lu, J. H. et al. A novel dressing composed of adipose stem cells and decellularized Wharton’s Jelly facilitated wound healing and relieved lymphedema by enhancing angiogenesis and lymphangiogenesis in a rat model. J. Funct. Biomater. https://doi.org/10.3390/jfb14020104 (2023).

    Google Scholar 

  56. Baik, J. E. et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin. Transl. Med. 12, e758. https://doi.org/10.1002/ctm2.758 (2022).

    Google Scholar 

  57. Liao, X. et al. LncRNA-Gm9866 promotes liver fibrosis by activating TGFβ/Smad signaling via targeting Fam98b. J. Transl. Med. 21, 778. https://doi.org/10.1186/s12967-023-04642-1 (2023).

    Google Scholar 

  58. Zhao, X. et al. Penetration cascade of size switchable nanosystem in desmoplastic stroma for improved pancreatic cancer therapy. ACS Nano 15, 14149–14161. https://doi.org/10.1021/acsnano.0c08860 (2021).

    Google Scholar 

  59. Chen, J. et al. TGF-β1-induced SOX18 elevation promotes hepatocellular carcinoma progression and metastasis through transcriptionally upregulating PD-L1 and CXCL12. Gastroenterology 167, 264–280. https://doi.org/10.1053/j.gastro.2024.02.025 (2024).

    Google Scholar 

  60. Wang, X., Wang, H., Cao, J. & Ye, C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 49, 160–171. https://doi.org/10.1159/000492851 (2018).

    Google Scholar 

  61. Qian, L., Pi, L., Fang, B. R. & Meng, X. X. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab. Investig. J. Tech. Methods Pathol. 101, 1254–1266. https://doi.org/10.1038/s41374-021-00611-8 (2021).

    Google Scholar 

  62. Kumar, V. A. et al. Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials 98, 113–119. https://doi.org/10.1016/j.biomaterials.2016.04.032 (2016).

    Google Scholar 

  63. Alderfer, L., Hall, E. & Hanjaya-Putra, D. Harnessing biomaterials for lymphatic system modulation. Acta Biomater. 133, 34–45. https://doi.org/10.1016/j.actbio.2021.06.006 (2021).

    Google Scholar 

Download references