Significant efficiency of Ti-MOF and Ag-NPs in antiviral effect in PVY-tobacco pathosystem

significant-efficiency-of-ti-mof-and-ag-nps-in-antiviral-effect-in-pvy-tobacco-pathosystem
Significant efficiency of Ti-MOF and Ag-NPs in antiviral effect in PVY-tobacco pathosystem

References

  1. Warghane, A. et al. Application of nanoparticles for management of plant viral pathogen: current status and future prospects. Virology 592, 109998. https://doi.org/10.1016/j.virol.2024.109998 (2024).

    Google Scholar 

  2. Varma, S. et al. Nanophytovirology approach to combat plant virus diseases in Nanotechnology in Agriculture and Environmental Science (eds Deshmukh, S. K., Kochar, M., Kaur, P. & Singh, P. P.) 127–154 (Taylor & Francis, (2023).

  3. Rajwade, J. M., Chikte, R. & Paknikar, K. Nanomaterials: new weapons in a crusade against phytopathogens. Appl. Microbiol. Biotechnol. 104, 1437–1461. https://doi.org/10.1007/s00253-019-10334-y (2020).

    Google Scholar 

  4. Tortella, G. R. et al. Synthesis of silver nanoparticles using extract of weeds and optimized by response surface methodology to the control of soil pathogenic bacteria ralstonia solanacearum. J. Soil. Sci. Plant. Nutr. 19 (1), 148–115. https://doi.org/10.1007/s42729-019-00021-2 (2019).

    Google Scholar 

  5. Tortella, G. R. et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974. https://doi.org/10.1016/j.jhazmat.2019.121974 (2020).

    Google Scholar 

  6. Tortella, G. R. et al. Advanced material against human (including Covid-19) and plant viruses: nanoparticles as a feasible strategy. Glob Chall. 5 (3), 1–13. 10.1002/ gch2.202000049 (2021).

    Google Scholar 

  7. Ma, G., Chen, P., Buss, G. R. & Tolin, S. A. Genetics of resistance to two strains of soybean mosaic virus in differential soybean genotypes. J. Hered. 95, 322–326. https://doi.org/10.1093/jhered/esh059 (2004).

    Google Scholar 

  8. Kang, B. C., Yeam, I. & Jahn, M. M. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581–621. https://doi.org/10.1146/annurev.phyto.43.011205.141140 (2005).

    Google Scholar 

  9. Lv, W. et al. The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment. Environ. Pollut. 315, 120368. https://doi.org/10.1016/j.envpol.2022.120368 (2022).

    Google Scholar 

  10. Farooq, T. et al. Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS Nano. 15 (4), 6030–6037. https://doi.org/10.1021/acsnano.0c10910 (2021).

    Google Scholar 

  11. Yiblet, Y. & Sisay, M. Metal oxide nanoparticles as a promising method to reduce biotic stress in plant cell wall: A review. Heliyon 10 (19), e37939. https://doi.org/10.1016/j.heliyon.2024.e37939 (2024).

    Google Scholar 

  12. Alhebsi, B. M. S., Francis, D. V. & Ahmed, Z. F. R. Nuti-priming for enhancing seed germination of Prosopis cineraria for afforestation of deserts. Acta Hortic. 1404, 499‐504 https://doi.org/10.17660/ActaHortic.2024.1404.67

  13. Cai, L., Liu, C., Fan, G., Liu, C. & Sun, S. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. : Nano. 6 (12), 3653–3669. https://doi.org/10.1039/C9EN00850K (2019).

    Google Scholar 

  14. Hao, Y. et al. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ. Sci. : Nano. 5 (7), 1685–1693 (2018). 10.1039/ C8EN00014J.

    Google Scholar 

  15. Wang, Y. et al. Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tob. Sci. Technol. 49, 22–30. https://doi.org/10.16135/j.issn1002-0861.20160104 (2016).

    Google Scholar 

  16. Vankova, R. et al. ZnO nanoparticle effects on hormonal pools in Arabidopsis Thaliana. Sci. Total Environ. 593-594, 535–542. https://doi.org/10.1016/j.scitotenv.2017.03.160 (2017).

    Google Scholar 

  17. Fujikawa, I. et al. Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. J. Biotechnol. 325, 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012 (2021).

    Google Scholar 

  18. Elsharkawy, M. M. & Derbalah, A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in Faba bean. Pest Manage. Sci. 75 (3), 828–834. https://doi.org/10.1002/ps.5185 (2019).

    Google Scholar 

  19. Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859. https://doi.org/10.1021/ja903726m (2009).

    Google Scholar 

  20. Li, W. Q. et al. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. Chemosphere 258, 127349. https://doi.org/10.1016/j.chemosphere.2020.127349 (2020).

  21. Tan, B. L., Norhaizan, M. E., Liew, W. P. P. & Rahman, S. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front. Pharmacol. 9, 1162. https://doi.org/10.3389/fphar.2018.01162 (2018).

    Google Scholar 

  22. Siddiqi, K. & Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 12 https://doi.org/10.1186/s11671-017-1861-y (2017).

  23. Vargas-Hernandez, M. et al. Nanoparticles as potential antivirals in agriculture. Agriculture 10 (10), 444. https://doi.org/10.3390/agriculture10100444 (2020).

    Google Scholar 

  24. Xiao, J. D. & Jiang, H. L. Metal–Organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 56, 356. https://doi.org/10.1021/acs.accounts.8b00521 (2019).

    Google Scholar 

  25. Masood, H. A. et al. Metal–organic frameworks as versatile platforms for sustainable crop disease management: a comprehensive review of mechanisms and applications. Environ. Sci. Nano. 12 (7), 3425–3441. https://doi.org/10.1039/D5EN00042D (2025).

    Google Scholar 

  26. Shahzadi, S., Akhtar, M., Arshad, M., Ijaz, M. H. & Janjua, M. R. S.A. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv. 14 (38), 27575–27607. https://doi.org/10.1039/d4ra05183a (2024).

    Google Scholar 

  27. Chauhan, D., Omar, R. A., Mangalaraja, R. V., Ashfaq, M. & Talreja, N. Metal-organic framework as an emerging material: a novel plant growth stimulant in Nanotechnology-based sustainable alternatives for the management of plant diseases (ed. Balestra, G., Fortunati, E.) 323–339 (Elsevier, 2022).

  28. Basak, S. et al. Metal-organic framework as nanocarriers for agricultural applications: a review. Front. Nanotechnol. 6, 1385981. https://doi.org/10.3389/fnano.2024.1385981 (2024).

    Google Scholar 

  29. Abánades, L. et al. Metal–organic frameworks for biological applications. Nat. Rev. Methods Primers. 4 https://doi.org/10.1038/s43586-024-00320-8 (2024).

  30. Elmer, W. & White, J. C. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56, 111–133. https://doi.org/10.1146/annurev-phyto-080417-050108 (2018).

    Google Scholar 

  31. Banerjee, S., Bose, S., Shukla, A. C. & Baig, M. R. Biotechnological approaches in infectious diseases in Concepts in pharmaceutical biotechnology and drug development (ed. Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S.), 397 – 317 (Springer, 2024).

  32. Ramezani, M., Ramezani, F. & Gerami, M. Nanoparticles in pest incidences and plant disease control in Nanotechnology for agriculture: crop production & protection (ed. Panpatte, D.G., Jhala, Y.K.) 233–272. (Springer, 2019).

  33. Jain, D. & Kothari, S. L. Green synthesis of silver nanoparticles and their application in plant virus Inhibition. J. Mycol. Plant. Pathol. 44 (1), 1–4 (2014).

    Google Scholar 

  34. Abdelkhalek, A. et al. Ocimum basilicum-mediated synthesis of silver nanoparticles induces innate immune responses against Cucumber mosaic virus in squash. Plants 11, 2707. https://doi.org/10.3390/plants11202707 (2022).

    Google Scholar 

  35. El-Dougdoug, N. K., Bondok, A. & El-Dougdoug, K. A. Evaluation of silver nanoparticles as antiviral agent against ToMV and PVY in tomato plants. Middle East J. Appl. Sci. 8 (1), 100–111 (2018).

    Google Scholar 

  36. Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524 (1999).

    Google Scholar 

  37. Otulak-Kozieł, K., Kozieł, E., Treder, K. & Király, L. Glutathione contribution in interactions between turnip mosaic virus and Arabidopsis Thaliana mutants lacking respiratory burst oxidase homologs D and F. Int. J. Mol. Sci. 24 (8), 7128. https://doi.org/10.3390/ijms24087128 (2023).

    Google Scholar 

  38. Thayer, S. S. & Björkman, O. Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res. 23, 331–343. https://doi.org/10.1007/BF00034864 (1990).

    Google Scholar 

  39. Štefanić, P. P. et al. Phytotoxicity of silver nanoparticles on tobacco plants: evaluation of coating effects on photosynthetic performance and Chloroplast ultrastructure. Nanomaterials 11 (74). https://doi.org/10.3390/nano11030744 (2021).

  40. Lam, V. P., Loi, D. N., Shin, J., Mi, L. K. & Park, J. Optimization of Salicylic acid concentrations for increasing antioxidant enzymes and bioactive compounds of Agastache rugosa in a plant factory. PLoS ONE. 19 (7), e0306340. https://doi.org/10.1371/journal.pone.0306340 (2024).

    Google Scholar 

  41. Otulak, K., Garbaczewska, G. & Cytopathological Potato virus Y structures during Solanaceous plants infection. Micron 43(7), 839–850. https://doi.org/10.1016/j.micron.2012.02.015 (2012).

  42. Nasiłowska, B., Skrzeczanowski, W., Bombalska, A. & Bogdanowicz, Z. Laser emission spectroscopy of graphene oxide deposited on 316 steel and Ti6Al4V titanium alloy suitable for orthopedics. Materials 16, 2574. https://doi.org/10.3390/ma16072574 (2023).

    Google Scholar 

  43. Treder, K., Zacharzewska, B., Przewodowska, A., Przewodowski, W. & Otulak, K. Ion-exchange membrane chromatography as an alternative method of separation of potato Y virus. Plant. Breed. Seed Sci. 72, 55–67. https://doi.org/10.1515/plass-2015-0031 (2015).

    Google Scholar 

  44. Ali, S. et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 212–213, 29–37. https://doi.org/10.1016/j.micres.2018.04.008 (2018).

    Google Scholar 

  45. Baebler, Š., Coll, A. & Grunden, K. Plant molecular responses to Potato virus Y: a continuum of outcomes from sensitivity and tolerance to resistance. Viruses 12, 217. https://doi.org/10.3390/v12020217 (2020).

    Google Scholar 

  46. Otulak-Kozieł, K., Kozieł, E., Lockhart, B. E. L. & Bujarski, J. J. The expression of potato expansin A3 (StEXPA3) and extension 4 (StEXT4) genes with distribution of StEXPAs and HRGPs-extensin changes as an effect of cell wall rebuilding in two types of PVYNTNSolanum tuberosum interactions. Viruses 12, 66. https://doi.org/10.3390/v12010066 (2020).

  47. Kozieł, E., Surowiecki, P., Przewodowska, A., Bujarski, J. J. & Otulak-Kozieł, K. Modulation of expression of PVYNTN RNA-dependent RNA polymerase (NIb) and heat shock cognate host protein HSC70 in susceptible and hypersensitive potato cultivars. Vaccines 9 (11), 1254. https://doi.org/10.3390/vaccines9111254 (2021).

    Google Scholar 

  48. Otulak-Kozieł, K., Kozieł, E., Horváth, E. & Csiszár, J. AtGSTU19 and AtGSTU24 as moderators of the response of Arabidopsis thaliana to Turnip mosaic virus. Int. J. Mol. Sci. 23, 11531. https://doi.org/10.3390/ijms231911531 (2022).

  49. Baek, E., Yoon, J. Y. & Palukaitis, P. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco. Virology 510, 29–39. https://doi.org/10.1016/j.virol.2017.06.029 (2017).

    Google Scholar 

  50. Otulak, K. & Garbaczewska, G. Ultrastructural events during hypersensitive response of potato cv. Rywal infected with necrotic strains of potato virus Y. Acta Physiol. Plant. 32, 635–644. https://doi.org/10.1007/s11738-009-0440-y (2010).

    Google Scholar 

  51. Otulak, K. & Garbaczewska, G. The participation of plant cell organelles in compatible and incompatible potato virus Y-tobacco and -potato plant interaction. Acta Physiol. Plant. 36, 85–99. https://doi.org/10.1007/s11738-013-1389-4 (2014).

    Google Scholar 

  52. Raskin, I., Turner, I. M. & Melander, W. R. Regulation of heat production in the inflorescences of arum Lily by endogenous Salicylic acid. Proc. Natl. Acad. Sci. USA. 86, 2214–2218 (1989).

    Google Scholar 

  53. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant. Cell. 3 (8), 809–818. https://doi.org/10.1105/tpc.3.8.809 (1991).

    Google Scholar 

  54. Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207; 10.1007/ Bf00018060 (1973). (1973).

  55. Marín, J. A., Carrasco, A. A. & Arbeloa, A. Proline content in root tissues and root exudates as a response to salt stress of excised root cultures of Prunus fruit tree rootstocks. ITEA 105, 282–290 (2009).

    Google Scholar 

  56. Avni, A. et al. From survival to productivity mode: cytokinins allow avoiding the avoidance strategy under stress conditions. Front. Plant. Sci. 11, 879. https://doi.org/10.3389/fpls.2020.00879 (2020).

    Google Scholar 

  57. Poborilova, Z., Opatrilova, R. & Babula, P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 91, 1–11 (2013).

    Google Scholar 

  58. Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16 (3), 144–158 (1965).

    Google Scholar 

  59. Sandhu, D., Cornacchione, M. V., Ferreira, J. F. S. & Suarez, D. L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci. Rep. 7, 42958. https://doi.org/10.1038/srep42958 (2017).

    Google Scholar 

  60. Cvjetko, P. et al. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut Res. 25, 5590–5602. https://doi.org/10.1007/s11356-017-0928-8 (2018).

    Google Scholar 

  61. Peltonen, S. & Karjalainen, R. Phenylalanine ammonia-lyase activity in barley after infection with Bipolaris Sorokiniana or treatment with its purified Xylanase. J. Phytopathol. 143 (4), 239–245. https://doi.org/10.1111/j.1439-0434.1995.tb00606.x (1995).

    Google Scholar 

  62. Li, L. & Steffens, J. C. Overexpression of polyphenol oxidase in Transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239–247. https://doi.org/10.1007/s00425-002-0750-4 (2002).

    Google Scholar 

  63. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal. Biochem. 44 (1), 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 (1971).

    Google Scholar 

  64. Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

    Google Scholar 

  65. Esterbauer, H., Schwarzl, E. & Hayn, M. A rapid assay for catechol oxidase and laccase using 2-nitro-5-thiobenzoic acid. Anal. Biochem. 77, 486–494. https://doi.org/10.1016/0003-2697(77)90262-7 (1977).

  66. Thipyapong, P., Hunt, M. D. & Steffens, J. C. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40, 673–676. https://doi.org/10.1016/0031-9422(95)00359-F (1995).

    Google Scholar 

  67. Chang, J. et al. A thaumatin-like effector protein suppresses the rust resistance of wheat and promotes the pathogenicity of Puccinia triticina by targeting TaRCA. New. Phytol. 244 (5), 1947–1960. https://doi.org/10.1111/nph.20142 (2024).

    Google Scholar 

  68. He, R., Li, Y., Bernards, M. A. & Wang, A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. New. Phytol. 245 (1), 299–317. https://doi.org/10.1111/nph.20233 (2025).

    Google Scholar 

  69. Derbalah, A. S. H. & Elsharkawy, M. M. A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. J. Biotechnol. 306, 134–141. https://doi.org/10.1016/j.jbiotec.2019.10.003 (2019).

    Google Scholar 

  70. Eugene, K. & Zholobak, N. Antiviral activity of cerium dioxide nanoparticles on Tobacco mosaic virus model. Topical Issues new. Drugs Dev. 1, 355 (2016).

    Google Scholar 

  71. Elbeshehy, E. K. F., Elazzazy, A. M. & Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean yellow mosaic virus and human pathogens. Front. Microbiol. 6, 453. https://doi.org/10.3389/fmicb.2015.00453 (2015).

    Google Scholar 

  72. Acuña-Fuentes, N. L. et al. Antiviral activity of TiO2 NPs against Tobacco mosaic virus in chili pepper (Capsicum annuum L.). Agriculture 12, 2101. https://doi.org/10.3390/agriculture12122101 (2022).

  73. Judy, J. D., Unrine, J. M., Rao, W., Wirick, S. & Bertsch, P. M. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467–8474. https://doi.org/10.1021/es3019397 (2012).

    Google Scholar 

  74. Slomberg, D. L. & Schoenfisch, M. H. Silica nanoparticle phytotoxicity to Arabidopsis Thaliana. Environ. Sci. Technol. 46, 10247–10254. https://doi.org/10.1021/es300949f (2012).

    Google Scholar 

  75. Albersheim, B., Darvill, A., Roberts, K., Sederoff, R. & Staehelin, A. Cell Walls and Plant Anatomy in Plant cell walls (ed. Albersheim, B., Darvill, A., Roberts, K., Sederoff, R., Staehelin) 1–42. (Garland Science, 2010).

  76. Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant. Commun. 3 (6), 100346. https://doi.org/10.1016/j.xplc.2022.100346 (2022).

    Google Scholar 

  77. Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 10, 257–278. https://doi.org/10.3109/17435390.2015.1048326 (2016).

    Google Scholar 

  78. Lv, Z. et al. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): accumulation, biotransformation and phytotoxicity. Sci. Total Environ. 796, 148927. https://doi.org/10.1016/j.scitotenv.2021.148927 (2021).

    Google Scholar 

  79. Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172. https://doi.org/10.1021/acs.nanolett.5b04467 (2016).

    Google Scholar 

  80. Mckenna, J. F. et al. The cell wall regulates dynamics and size of plasma- membrane nanodomains in Arabidopsis. Proc. Natl. Acad. Sci. USA. 116, 12857–12862. https://doi.org/10.1073/pnas.1819077116 (2019).

  81. Alkubaisi, N. A. & Aref, N. M. Dispersed gold nanoparticles potentially ruin gold Barley yellow Dwarf virus and eliminate virus infectivity hazards. Appl. Nanosci. 7 (1–2), 31–40. https://doi.org/10.1080/13102818.2015.1008194 (2017).

    Google Scholar 

  82. El Gamal, A. Y. et al. Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Arch. Virol. 167, 85–97. https://doi.org/10.1007/s00705-021-05280-y (2022).

    Google Scholar 

  83. Cai, L. et al. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 393, 122415. https://doi.org/10.1016/j.jhazmat.2020.122415 (2020).

    Google Scholar 

  84. Goggin, F. L. & Fisher, H. D. Reactive oxygen species in plant interactions with aphids. Front. Plant. Sci. 12, 811105. https://doi.org/10.3389/fpls.2021.811105 (2022).

    Google Scholar 

  85. Parida, A. K., Das, A. B. & Mochanty, P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J. Plant. Physiol. 161 (5), 531–542. https://doi.org/10.1078/0176-1617-01084 (2004).

    Google Scholar 

  86. Madhusudhan, K. N., Srikanta, B. M., Shylaja, M. D., Prakash, H. S. & Shetty, H. S. Changes in antioxidant enzymes, hydrogen peroxide, Salicylic acid and oxidative stress in compatible and incompatible host-tobamovirus interaction. J. Plant. Interact. 4 (3), 157–166. https://doi.org/10.1080/17429140802419516 (2009).

    Google Scholar 

  87. Abdelkhalek, A., Al-Askar, A., Alsubaie, M. M. & Behiry, S. I. First report of protective activity of Paronychia Argentea extract against Tobacco mosaic virus infection. Plants 10 (11), 2435. https://doi.org/10.3390/plants10112435 (2021).

    Google Scholar 

  88. Aseel, D. G. et al. Foliar application of nanoclay promotes potato (Solanum tuberosum L.) growth and induces systemic resistance against Potato virus Y. Viruses 14 (10), 2151. https://doi.org/10.3390/v14102151 (2022).

    Google Scholar 

  89. Sofy, A. R. et al. Mitigating effects of Bean yellow mosaic virus infection in Faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int. J. Biol. Macromol. 163, 1261–1275. https://doi.org/10.1016/j.ijbiomac.2020.07.066 (2020).

    Google Scholar 

  90. Phang, J. M. The regulatory functions of proline and pyrroline-5-carboxylic acid. CTCR 25, 91–132. https://doi.org/10.1016/B978-0-12-152825-6.50008-4 (1985).

    Google Scholar 

  91. Hayat, S. et al. Role of proline under changing environments: a review. Plant. Signal. Behav. 7, 1456–1466. https://doi.org/10.4161/psb.21949 (2012).

    Google Scholar 

  92. Ibrahim, A. M. M., Awad, A. E., Gendy, A. S. H. & Abdelkader, M. I. A. Effect of proline foliar spray on growth and productivity of sweet Basil (Ocimum Basilicum, L.) plant under salinity stress conditions. Zagazig J. Agric. Res. 46 (6), 1877–1889. https://doi.org/10.21608/zjar.2019.51896 (2016).

    Google Scholar 

  93. Renzetti, M., Funck, D., Trovato, M. & Proline A unified mechanism in plant development and stress response? Plants 14 (1), 2. https://doi.org/10.3390/plants14010002 (2024).

    Google Scholar 

  94. Daaf, F. et al. Phenolic compounds in plant defense and pathogen counter-defense mechanisms. In Recent Advances in Polyphenol Research (eds Cheynier, V., Sarni-Manchado, P. et al.) 191–208 (Wiley, 2012).

    Google Scholar 

  95. Kaur, A., Kaur, M. & Tak, Y. Insights into biotic stress management by plants using phenolic compounds. In Plant Phenolics in Biotic Stress Management (eds Lone, R. & Khan, S.) 75–93 (Springer, 2024).

    Google Scholar 

  96. Khan, A. et al. Plant secondary metabolites—central regulators against abiotic and biotic stresses. Metabolites 15, 276. https://doi.org/10.3390/metabo15040276 (2025).

    Google Scholar 

  97. Kumar, S. et al. Role of plant secondary metabolites in defense and transcriptional regulation in response to biotic stress. Plant. Stress. 8, 100154. https://doi.org/10.1016/j.stress.2023.100154 (2023).

    Google Scholar 

  98. Rashad, Y., Aseel, D. & Hammad, S. Phenolic compounds against fungal and viral plant diseases in Plant phenolics in sustainable agriculture (ed. Lone, R., Shuab, R., Kamili, A.) 201–219 (Springer, 2020).

  99. Abdelkhalek, A. et al. chitosan nanoparticles inactivate Alfalfa mosaic virus replication and boost innate immunity in Nicotiana glutinosa plants. Plants 10(12), 2701. https://doi.org/10.3390/plants10122701 (2021).

  100. Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant. Sci. 8, 832. https://doi.org/10.3389/fpls.2017.00832 (2017).

    Google Scholar 

  101. Chung, I. M., Rekha, K., Venkidasamy, B. & Thiruvengadam, M. Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut. 230, 1–14. https://doi.org/10.1007/s11270-018-4051-3 (2019).

  102. Kaur, H., Kaur, M., Aggarwal, R., Sharma, S. & Singh, D. Nanocomposite of MgFe2O4 and Mn3O4 as polyphenol oxidase mimic for sensing of polyphenols. Biosensors 12 (6), 428. https://doi.org/10.3390/bios12060428 (2019).

    Google Scholar 

  103. Boeckx, T., Winters, A. L., Webb, K. J. & Kingston-Smith, A. H. Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J. Exp. Bot. 66 (12), 3571–3579. https://doi.org/10.1093/jxb/erv141 (2015).

    Google Scholar 

  104. Zhang, S. Recent advances of polyphenol oxidases in plants. Molecules 28 (5), 2158. https://doi.org/10.3390/molecules28052158 (2023).

    Google Scholar 

  105. Kaur, S. et al. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants. 28, 485–504. https://doi.org/10.1007/s12298-022-01146-y (2022).

    Google Scholar 

  106. Elsharkawy, M. M. & Mousa, K. M. Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder. Int. J. Pest Manag. 61 (4), 353–358. https://doi.org/10.1080/09670874.2015.1070930 (2015).

    Google Scholar 

  107. Fang, X. et al. The role of Salicylic acid in plant defense responses against biotic stresses. Plant. Horm. 1, e004. https://doi.org/10.48130/ph-0025-0003 (2025).

    Google Scholar 

  108. Tian, H., Xu, L., Li, X. & Zhang, Y. Salicylic acid: the roles in plant immunity and crosstalk with other hormones. JIPB 67 (3), 733–785. https://doi.org/10.1111/jipb.13820 (2025).

    Google Scholar 

  109. Kumar, P., Pandey, S. & Pati, P. K. Interaction between pathogenesis-related (PR) proteins and phytohormone signaling pathways in conferring disease tolerance in plants. 177(2), e70174. https://doi.org/10.1111/ppl.70174 (2025).

  110. Michel, V. et al. NtTPN1: A RPP8-like R gene required for Potato virus Y-induced veinal necrosis in tobacco. Plant. J. 95, 700–714. https://doi.org/10.1111/tpj.13980 (2018).

    Google Scholar 

  111. Otulak-Kozieł, K., Kozieł, E., Bujarski, J. J., Frankowska-Łukawska, J. & Torres, M. A. Respiratory burst oxidase homologs RBOHD and RBOHF as key modulating components of response in Turnip mosaic virusArabidopsis Thaliana (L.) Heyhn system. Int. J. Mol. Sci. 21 (22), 8510. https://doi.org/10.3390/ijms21228510 (2020).

    Google Scholar 

  112. Wang, L. et al. Genome-wide analysis of the Thaumatin-like gene family in Qingke (Hordeum vulgare L. var. nudum) uncovers candidates involved in plant defense against biotic and abiotic stresses. Front. Plant. Sci. 13, 912226. https://doi.org/10.3389/fpls.2022.912296 (2022).

    Google Scholar 

  113. Elvira, M. I., Galdeano, M. M., Gilardi, P., García-Luque, I. & Serra, M. T. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of Pepper mild mottle virus (PMMoV) in Capsicum Chinense L3 plants. J. Exp. Bot. 59 (6), 1253–1265. https://doi.org/10.1093/jxb/ern032 (2008).

    Google Scholar 

  114. Padmanabhan, C. et al. Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to Tomato spotted wilt Tospovirus. Sci. Rep. 9 (1), 7673. https://doi.org/10.1038/s41598-019-44100-x (2019).

    Google Scholar 

  115. Aseel, D. G. et al. Comparative analysis of the expression profiles of pathogen-related genes in tomato systemically infected with Tobacco mosaic virus and Cucumber mosaic virus. Int. J. Plant. Biol. 14 (2), 458–473. https://doi.org/10.3390/ijpb14020035 (2023).

    Google Scholar 

  116. Otulak-Kozieł, K., Kozieł, E. & Lockhart, B. E. L. Plant cell wall dynamics in compatible and incompatible potato response to infection caused by Potato virus Y (PVYNTN). Int. J. Mol. Sci. 19(3), 862; (2018). https://doi.org/10.3390/ijms19030862 (2018).

  117. Lay, F. T. & Anderson, M. Defensins-components of the innate immune system in plants. Curr. Pro Pep Sci. 6, 85–101. https://doi.org/10.2174/1389203053027575 (2005).

    Google Scholar 

  118. Domingo, G. et al. A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis Thaliana with a focus on their abiotic stress-specific transcriptional modulation. Curr. Plant. Biol. 39, 100376. https://doi.org/10.1016/j.cpb.2024.100376 (2024).

    Google Scholar 

  119. Mitter, N., Kazan, K., Way, H. M., Broekaert, W. F. & Manners, J. M. Systemic induction of an Arabidopsis plant defensin gene promoter by Tobacco mosaic virus and jasmonic acid in Transgenic tobacco. Plant. Sci. 136 (2), 169–180 (1998). -9452(98)00094 – 6.

    Google Scholar 

  120. Roberts, K. Long-distance movement of Cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. New. Phytol. 175, 707–717. https://doi.org/10.1111/j.1469-8137.2007.02136.x (2007).

    Google Scholar 

Download references