References
-
Singer, R. S. et al. Raising animals without antibiotics: U.S. producer and veterinarian experiences and opinions. Front. Vet. Sci. 6, 452 (2019).
-
Zhou, Y., Zhang, A., van Klinken, R. D., Jones, D. & Wang, J. Consumers’ perspectives on antibiotic use and antibiotic resistance in food animals: a systematic review. NPJ Sci. Food 9, 29 (2025).
-
Lansing, D. Assessing life and assembling economies in the production of antibiotic-free broilers. Environ. Plan. A Econ. Space 57, 495–512 (2025).
-
Karavolias, J., Salois, M. J., Baker, K. T. & Watkins, K. Raised without antibiotics: impact on animal welfare and implications for food policy. Transl. Anim. Sci. 2, 337–348 (2018).
-
Plata, G. et al. Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Commun. Biol. 5, 293 (2022).
-
Fathima, S., Hakeem, W. G. A., Shanmugasundaram, R. & Selvaraj, R. K. Necrotic enteritis in broiler chickens: a review on the pathogen, pathogenesis, and prevention. Microorganisms https://doi.org/10.3390/microorganisms10101958 (2022).
-
Abd El-Hack, M. E. et al. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult. Sci. 101, 101590 (2022).
-
Williams, R. B. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).
-
Timbermont, L., Haesebrouck, F., Ducatelle, R. & Van Immerseel, F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 40, 341–347 (2011).
-
Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G. & Drew, M. D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 129, 60–88 (2006).
-
Emami, N. K. & Dalloul, R. A. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult. Sci. 100, 101330 (2021).
-
Gangaiah, D. et al. Recombinant Limosilactobacillus (Lactobacillus) delivering nanobodies against Clostridium perfringens NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 11, e1270 (2022).
-
Sandvang, D. et al. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult. Sci. 100, 100982 (2021).
-
Shamshirgaran, M. A. & Golchin, M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front. Vet. Sci. 11, 1429637 (2024).
-
Zhang, X. et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome 10, 107 (2022).
-
Kang, K. I. et al. Chicken astrovirus as an aetiological agent of runting-stunting syndrome in broiler chickens. J. Gen. Virol. 99, 512–524 (2018).
-
Sellers, H. S. Astrovirus Infections in Poultry https://www.merckvetmanual.com/poultry/viral-enteritis-in-poultry/astrovirus-infections-in-poultry (2024).
-
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol 71, 8228–8235 (2005).
-
Greppi, A. et al. Isolation and comparative genomic analysis of reuterin-producing Lactobacillus reuteri from the chicken gastrointestinal tract. Front. Microbiol 11, 1166 (2020).
-
Li, F. et al. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol. 21, 53 (2023).
-
Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol 2, 17121 (2017).
-
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
-
Veseli, I. et al. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 12, RP89862 (2025).
-
Scales, B. S., Dickson, R. P. & Huffnagle, G. B. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J. Leukoc. Biol. 100, 943–950 (2016).
-
Hsieh, S. C. et al. The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect. 9, 1402–1409 (2007).
-
Sang, R. et al. Taraxasterol alleviates aflatoxin B(1)-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. Ecotoxicol. Environ. Saf. 251, 114546 (2023).
-
Gadde, U., Kim, W. H., Oh, S. T. & Lillehoj, H. S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 18, 26–45 (2017).
-
Cheng, G. et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol. 5, 217 (2014).
-
Ji, J., Jin, W., Liu, S. J., Jiao, Z. & Li, X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm 4, e420 (2023).
-
Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio https://doi.org/10.1128/mBio.02566-18 (2019).
-
Jansseune, S. C. G. et al. Diet composition influences probiotic and postbiotic effects on broiler growth and physiology. Poult. Sci. 103, 103650 (2024).
-
Wang, J. et al. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: a review of the literature of the last decade. Anim. Nutr. 17, 244–264 (2024).
-
Baker, J. R. Jr., Farazuddin, M., Wong, P. T. & O’Konek, J. J. The unfulfilled potential of mucosal immunization. J. Allergy Clin. Immunol. 150, 1–11 (2022).
-
Russell, M. W. & Mestecky, J. Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front. Immunol. 13, 957107 (2022).
-
Hofacre, C. L. et al. Use of Aviguard and other intestinal bioproducts in experimental Clostridium perfringens-associated necrotizing enteritis in broiler chickens. Avian Dis. 42, 579–584 (1998).
-
Huang, B. et al. Immune stress impairs broiler performance by affecting hypothalamic methylation modification and intestinal 5-HT synthesis. Poult. Sci. 104, 105444 (2025).
-
Arsenault, R. J., Lee, J. T., Latham, R., Carter, B. & Kogut, M. H. Changes in immune and metabolic gut response in broilers fed beta-mannanase in beta-mannan-containing diets. Poult. Sci. 96, 4307–4316 (2017).
-
He, W., Goes, E. C., Wakaruk, J., Barreda, D. R. & Korver, D. R. A poultry subclinical necrotic enteritis disease model based on natural clostridium perfringens uptake. Front Physiol. 13, 788592 (2022).
-
Gangaiah, D. et al. Effects of Limosilactobacillus reuteri strains PTA-126787 and PTA-126788 on intestinal barrier integrity and immune homeostasis in an alcohol-induced leaky gut model. Sci. Rep. 14, 19584 (2024).
-
Yarru, L. P. et al. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult. Sci. 88, 2620–2627 (2009).
-
Ma, Q. et al. Molecular mechanisms of lipoic acid protection against aflatoxin B(1)-induced liver oxidative damage and inflammatory responses in broilers. Toxins (Basel) 7, 5435–5447 (2015).
-
Mei, W., Hao, Y., Xie, H., Ni, Y. & Zhao, R. Hepatic inflammatory response to exogenous LPS challenge is exacerbated in broilers with fatty liver disease. Animals https://doi.org/10.3390/ani10030514 (2020).
-
Kovesi, B. et al. Curcumin mitigates ochratoxin A-induced oxidative stress and alters gene expression in broiler chicken liver and kidney. Acta Vet. Hung. 72, 41–50 (2024).
-
Osselaere, A. et al. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE 8, e69014 (2013).
-
ADSA, ASAS & PSA. Guide for the Care and Use of Agricultural Animals in Research and Teaching 4th edn (American Dairy Science Association, American Society of Animal Science & Poultry Science Association, 2020).
-
Wilson, F. D. et al. Comparison of two methods for determination of intestinal villus to crypt ratios and documentation of early age-associated ratio changes in broiler chickens. Poult. Sci. 97, 1757–1761 (2018).
-
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
-
Kinstler, S. R. et al. Subclinical necrotic enteritis impacts developmental Notch and Wnt signaling and intestinal morphology in the small intestine of broiler chickens. Avian Dis. 68, 299–313 (2024).
-
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
-
McGillycuddy, M., Popovic, G., Bolker, B. M. & Warton, D. I. Parsimoniously fitting large multivariate random effects in glmmTMB. J. Stat. Softw. 112, 1–19 (2025).
-
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
-
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
-
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience https://doi.org/10.1093/gigascience/giab008 (2021).
-
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257. https://doi.org/10.1038/ncomms11257 (2016).
-
Olson, R. D. et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51, D678–D689 (2023).
-
Goldfarb, T. et al. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 53, D243–D257 (2025).
-
Piro, V. C., Matschkowski, M. & Renard, B. Y. MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling. Microbiome 5, 101 (2017).
-
Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).
-
Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).
-
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
-
Kim, J., Na, S. I., Kim, D. & Chun, J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J. Microbiol 59, 609–615 (2021).
-
Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).
-
Korotkevich, G. et al. Fast gene set enrichment analysis. Prerpint at bioRxiv https://doi.org/10.1101/060012 (2021).
-
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
-
Ma, J., Shojaie, A. & Michailidis, G. A comparative study of topology-based pathway enrichment analysis methods. BMC Bioinform. 20, 546 (2019).
-
Klunemann, M. et al. Multitissue transcriptomics demonstrates the systemic physiology of methionine deficiency in broiler chickens. Animal 18, 101143 (2024).
-
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).
-
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).
-
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
