Bacillus velezensis mitigates deoxynivalenol-induced intestinal inflammation and liver injury via modulating the gut microbiota

References

  1. Pestka, J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 3, 323–347 (2010).

    Google Scholar 

  2. Ndiaye, S. et al. Current review of mycotoxin biodegradation and bioadsorption: microorganisms, mechanisms, and main important applications. Toxins 14, 729 (2022).

    Google Scholar 

  3. Alassane-Kpembi, I. et al. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch. Toxicol. 91, 2677–2687 (2017).

    Google Scholar 

  4. Hasuda, A. L. et al. Deoxynivalenol induces apoptosis and inflammation in the liver: analysis using precision-cut liver slices. Food Chem. Toxicol. 163, 112930 (2022).

    Google Scholar 

  5. Wang, P. et al. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: a review. Food Chem. Toxicol. 182, 114121 (2023).

    Google Scholar 

  6. Zhang, Y. et al. Deoxynivalenol: occurrence, toxicity, and degradation. Food Control 155, 110027 (2024).

    Google Scholar 

  7. Murtaza, B. et al. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: comprehensive review. Chem.-Biol. Interact. 387, 110799 (2024).

    Google Scholar 

  8. Tu, Y., Liu, S., Cai, P. & Shan, T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: a review. Compr. Rev. Food Sci. Food Saf. 22, 3951–3983 (2023).

    Google Scholar 

  9. Oguz, H. et al. In vitro mycotoxin binding capacities of clays, glucomannan and their combinations. Toxicon 214, 93–103 (2022).

    Google Scholar 

  10. Tapingkae, W. et al. IndustriaL-scale production of mycotoxin binder from the red yeast Sporidiobolus pararoseus KM281507. J. Fungi 8, 353 (2022).

    Google Scholar 

  11. Tian, Y. et al. Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends Food Sci. Technol. 124, 96–107 (2022).

    Google Scholar 

  12. Ben Taheur, F., Kouidhi, B., Al Qurashi, Y. M. A., Ben Salah-Abbès, J. & Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160, 12–22 (2019).

    Google Scholar 

  13. Recharla, N., Park, S., Kim, M., Kim, B. & Jeong, J. Y. Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review. J. Anim. Sci. Technol. 64, 640–653 (2022).

    Google Scholar 

  14. Jeong, J. Y., Kim, J., Kim, M. & Park, S. Efficacy of high-dose synbiotic additives for deoxynivalenol detoxification: effects on blood biochemistry, histology, and intestinal microbiome in weaned piglets. Biology 13, 889 (2024).

    Google Scholar 

  15. Wang, X., Yong, C. C. & Oh, S. Metabolites of Latilactobacillus curvatus BYB3 and indole activate aryl hydrocarbon receptor to attenuate lipopolysaccharide-induced intestinal barrier dysfunction. Food Sci. Anim. Resour. 42, 1046–1060 (2022).

    Google Scholar 

  16. Khalid, F. et al. Potential of Bacillus velezensis as a probiotic in animal feed: a review. J. Microbiol. 59, 627–633 (2021).

    Google Scholar 

  17. Li, C. et al. Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property. Front. Microbiol. 14, https://doi.org/10.3389/fmicb.2023.1143265 (2023).

  18. Dhouib, H. et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol. Control 139, 104092 (2019).

    Google Scholar 

  19. Zeng, J., Huang, W., Tian, X., Hu, X. & Wu, Z. Brewer’s spent grain fermentation improves its soluble sugar and protein as well as enzymatic activities using Bacillus velezensis. Process Biochem. 111, 12–20 (2021).

    Google Scholar 

  20. Liu, Y. et al. Dietary Bacillus velezensis KNF-209 supplementation improves growth performance, enhances immunity, and promotes gut health in broilers. Poultry Sci. 103, 103946 (2024).

    Google Scholar 

  21. Chen, J., Zhang, X., He, Z., Xiong, D. & Long, M. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: a review. J. Integr. Agric. 23, 2507–2524 (2024).

    Google Scholar 

  22. Liu, M. et al. Chitosan oligosaccharide alleviates DON-induced liver injury via suppressing ferroptosis in mice. Ecotoxicol. Environ. Saf. 290, 117530 (2025).

    Google Scholar 

  23. Bai, Y. et al. Lactobacillus rhamnosus GG ameliorates DON-induced intestinal damage depending on the enrichment of beneficial bacteria in weaned piglets. J. Anim. Sci. Biotechnol. 13, 90 (2022).

    Google Scholar 

  24. Pabst, O. et al. Gut-liver axis: barriers and functional circuits. Nat. Rev. Gastroenterol. Hepatol. 20, 447–461 (2023).

    Google Scholar 

  25. Zheng, Z. & Wang, B. The gut-liver axis in health and disease: the role of gut microbiota-derived signals in liver injury and regeneration. Front. Immunol. 12, https://doi.org/10.3389/fimmu.2021.775526 (2021).

  26. Farid, W. et al. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from Indigenous Dahi. Food Sci. Nutr. 9, 5092–5102 (2021).

    Google Scholar 

  27. Li, S. et al. Oral delivery of bacteria: Basic principles and biomedical applications. J. Control. Release 327, 801–833 (2020).

    Google Scholar 

  28. Tsang, R. S. W. et al. Culture-Confirmed Invasive meningococcal disease in Canada, 2010 to 2014: characterization of Serogroup B Neisseria meningitidis strains and their predicted coverage by the 4CMenB vaccine. mSphere 5, https://doi.org/10.1128/mSphere.00883-19 (2020).

  29. Deng, Y. et al. Deoxynivalenol: emerging toxic mechanisms and control strategies, current and future perspectives. J. Agricult. Food Chem. 71, 10901–10915 (2023).

    Google Scholar 

  30. Liu, D., Wang, Q., He, W., Ge, L. & Huang, K. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicol. Environ. Saf. 231, 113209 (2022).

    Google Scholar 

  31. Zhao, W. et al. Modulating effects of Astragalus polysaccharide on immune disorders via gut microbiota and the TLR4/NF-κB pathway in rats with syndrome of dampness stagnancy due to spleen deficiency. J. Zhejiang Univ. Sci. B 24, 650–662 (2023).

    Google Scholar 

  32. Kamle, M. et al. Deoxynivalenol: an overview on occurrence, chemistry, biosynthesis, health effects and its detection, management, and control strategies in food and feed. Microbiol. Res. 13, 292–314 (2022).

    Google Scholar 

  33. Zhao, X. et al. Contamination and biotransformation of deoxynivalenol (DON) in common commercial foods: current status, challenges and future perspectives. Green Synth. Catal. https://doi.org/10.1016/j.gresc.2025.04.008 (2025).

  34. Wang, L. L. et al. Food raw materials and food production occurrences of deoxynivalenol in different regions. Trends Food Sci. Technol. 83, 41–52 (2019).

    Google Scholar 

  35. Zhu La, A. T. et al. A New Bacillus velezensis strain CML532 improves chicken growth performance and reduces intestinal clostridium perfringens colonization. Microorganisms 12, https://doi.org/10.3390/microorganisms12040771 (2024).

  36. Dong, W. et al. Isolation of Bacillus licheniformis and its protective effect on liver oxidative stress and apoptosis induced by aflatoxin B1. Poultry Sci. 103, 104079 (2024).

    Google Scholar 

  37. Zhang, Q. et al. Characterization and antioxidant activity of released exopolysaccharide from potential probiotic Leuconostoc mesenteroides LM187. J. Microbiol. Biotechnol. 31, 1144–1153 (2021).

    Google Scholar 

  38. Bai, Y. et al. Gut microbiota mediates Lactobacillus rhamnosus GG alleviation of deoxynivalenol-induced anorexia. J. Agricult. Food Chem. 71, 8164–8181 (2023).

    Google Scholar 

  39. Broekaert, N., Devreese, M., De Baere, S., De Backer, P. & Croubels, S. Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem. Toxicol. 80, 17–31 (2015).

    Google Scholar 

  40. Zhang, Y. et al. Deoxynivalenol: occurrence, toxicity, and degradation. Food Control 155,110027 (2024).

  41. Monastero, R. N. & Pentyala, S. Cytokines as biomarkers and their respective clinical cutoff levels. Int. J. Inflamm. 2017, 4309485 (2017).

    Google Scholar 

  42. Ma, R. et al. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. Ecotoxicol. Environ. Saf. 280, 116547 (2024).

    Google Scholar 

  43. Kiela, P. R. & Ghishan, F. K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 30, 145–159 (2016).

    Google Scholar 

  44. Hanyu, H. et al. Mycotoxin deoxynivalenol has different impacts on intestinal barrier and stem cells by its route of exposure. Toxins 12, 610 (2020).

    Google Scholar 

  45. Zeisel, M. B., Dhawan, P. & Baumert, T. F. Tight junction proteins in gastrointestinal and liver disease. Gut 68, 547–561 (2019).

    Google Scholar 

  46. Liao, S. et al. Chloroquine improves deoxynivalenol-induced inflammatory response and intestinal mucosal damage in piglets. Oxid. Med. Cel. Longev. 2020, 1–13 (2020).

    Google Scholar 

  47. Ge, L. et al. Nontoxic-dose deoxynivalenol aggravates lipopolysaccharides-induced inflammation and tight junction disorder in IPEC-J2 cells through activation of NF-κB and LC3B. Food Chem. Toxicol. 145, 111712 (2020).

    Google Scholar 

  48. Selwyn, F. P., Cheng, S. L., Klaassen, C. D. & Cui, J. Y. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metabol. Dispos. 44, 262–274 (2016).

    Google Scholar 

  49. Chen, B. et al. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front. Microbiol. 14, https://doi.org/10.3389/fmicb.2023.1322910 (2023).

  50. Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50, 1–9 (2018).

    Google Scholar 

  51. Wan, S. et al. Baicalin ameliorates the gut barrier function and intestinal microbiota of broiler chickens. Acta Biochim. Biophys. Sin. 56, 634–644 (2024).

    Google Scholar 

  52. Lin, R. et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochem. Pharmacol. 175, 113868 (2020).

    Google Scholar 

  53. Ma, K. et al. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets. Food Funct. 13, 3905–3916 (2022).

    Google Scholar 

  54. Hays, K. E., Pfaffinger, J. M. & Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 16, 2393270 (2024).

    Google Scholar 

  55. Yao, Y. et al. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit. Rev. Food Sci. Nutr. 62, 1–12 (2022).

    Google Scholar 

  56. Bruneau, A., Hundertmark, J., Guillot, A. & Tacke, F. Molecular and cellular mediators of the gut-liver axis in the progression of liver diseases. Front. Med. 8, https://doi.org/10.3389/fmed.2021.725390 (2021).

  57. Pestka, J. & Zhou, H.-R. Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol. Sci. 92, 445–455 (2006).

    Google Scholar 

  58. Fang, J., Yang, Y. & Xie, W. Chinese expert consensus on the application of live combined Bifidobacterium, Lactobacillus, and Enterococcus powder/capsule in digestive system diseases (2021). J. Gastroenterol. Hepatol. 38, 1089–1098 (2023).

    Google Scholar 

  59. Yi, R., Zhou, X., Liu, T., Xue, R. & Yang, Z. Amelioration effect of Lactobacillus plantarum KFY02 on low-fiber diet-induced constipation in mice by regulating gut microbiota. Front. Nutr. 9, https://doi.org/10.3389/fnut.2022.938869 (2022).

  60. Al-Sadi, R. et al. Lactobacillus acidophilus induces a strain- specific and toll-like receptor 2-dependent enhancement of intestinal epithelial tight junction barrier and protection against intestinal inflammation. Am. J. Pathol. 191, 872–884 (2021).

    Google Scholar 

  61. Niu, H. et al. Effect of Lactobacillus rhamnosus MN-431 producing indole derivatives on complementary feeding-induced diarrhea rat pups through the enhancement of the intestinal barrier function. Mol. Nutr. Food Res. 66, 2100619 (2022).

    Google Scholar 

  62. Lai, H. C. et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut 71, 309–321 (2022).

    Google Scholar 

  63. Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).

    Google Scholar 

  64. Liu, C. et al. Epigallocatechin gallate alleviates Staphylococcal Enterotoxin A-induced intestinal barrier damage by regulating gut microbiota and inhibiting the TLR4-NF-κB/MAPKs-NLRP3 inflammatory cascade. J. Agricult. Food Chem. 71, 16286–16302 (2023).

    Google Scholar 

  65. Mao, X. et al. Deoxynivalenol induces caspase-3/GSDME-dependent pyroptosis and inflammation in mouse liver and HepaRG cells. Arch. Toxicol. 96, 3091–3112 (2022).

    Google Scholar 

  66. Mennah-Govela, Y. A., Swackhamer, C. & Bornhorst, G. M. Gastric secretion rate and protein concentration impact intragastric pH and protein hydrolysis during dynamic in vitro gastric digestion. Food Hydrocoll. Health 1, 100027 (2021).

    Google Scholar 

  67. Jiang, Y. et al. Oral administration of Bacillus cereus GW-01 alleviates the accumulation and detrimental effects of ?-cypermethrin in mice. Chemosphere 312, 137333 (2023).

    Google Scholar 

  68. Qi, N. et al. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front. Nutr. 10, https://doi.org/10.3389/fnut.2023.1123422 (2023).

  69. Zhao, J. et al. Mechanism of β-cypermethrin metabolism by Bacillus cereus GW-01. Chem. Eng. J. 430, 132961 (2022).

    Google Scholar 

  70. Kuebutornye, F. K. A. et al. In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile Tilapia, Oreochromis niloticus. Probiot. Antimicrob. Proteins 12, 412–424 (2020).

    Google Scholar 

  71. Fernández, M. F., Boris, S. & Barbés, C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94, 449–455 (2003).

    Google Scholar 

  72. Kang, R. et al. Toxicokinetics of deoxynivalenol in Dezhou male donkeys after oral administration. Toxins 15, https://doi.org/10.3390/toxins15070426 (2023).

  73. Luo, J., Xiao, S., Wang, B., Cai, Y. & Wang, J. In vitro fermentation of pineapple-whey protein fermentation product on human intestinal microbiota derived from fecal microbiota transplant donors. LWT-Food Sci. Technol. 191, 115637 (2024).

    Google Scholar 

Download references