Improved in vivo gene knockout with high specificity using multiplexed Cas12a sgRNAs

improved-in-vivo-gene-knockout-with-high-specificity-using-multiplexed-cas12a-sgrnas
Improved in vivo gene knockout with high specificity using multiplexed Cas12a sgRNAs

Data availability

All data is contained within the manuscript. Source data are provided with this paper. The ‘Wingpose’ Cellpose model is provided as Supplementary Data 4. The described plasmids are publicly available from the European Plasmid Repository and Addgene and the fly strains and available from the Vienna Drosophila Resource Center. Source data are provided with this paper.

References

  1. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Google Scholar 

  2. Przybyla, L. & Gilbert, L. A. A new era in functional genomics screens. Nat. Rev. Genet 23, 89–103 (2022).

    Google Scholar 

  3. Dempster, J. M. et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat. Commun. 10, 5817 (2019).

    Google Scholar 

  4. Port, F. & Bullock, S. L. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat. Methods 13, 852–854 (2016).

    Google Scholar 

  5. Esmaeili Anvar, N. et al. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat. Commun. 15, 3577 (2024).

    Google Scholar 

  6. Yin, J. A. et al. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat. Biomed. Eng. 9, 127–148 (2024).

  7. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 Bethesda. Md 7, 2719–2727 (2017).

    Google Scholar 

  8. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Google Scholar 

  9. Gonçalves, E. et al. Minimal genome-wide human CRISPR-Cas9 library. Genome Biol. 22, 40 (2021).

    Google Scholar 

  10. Port, F. et al. A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. eLife 9, e53865 (2020).

    Google Scholar 

  11. Meltzer, H. et al. Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat. Commun. 10, 2113 (2019).

    Google Scholar 

  12. Zirin, J. et al. Large-scale transgenic Drosophila resource collections for loss- and gain-of-function studies. Genetics 214, 755–767 (2020).

    Google Scholar 

  13. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    Google Scholar 

  14. Breinig, M. et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat. Methods 16, 51–54 (2019).

    Google Scholar 

  15. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Google Scholar 

  16. Griffith, A. L. et al. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. cell. Genomics 3, 100387 (2023).

    Google Scholar 

  17. Hsiung, C.C.S. et al. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat. Biotechnol. https://www.nature.com/articles/s41587-024-02224-0 (2024).

  18. Lazar, N. H. et al. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR-Cas9 editing. Nat. Genet 56, 1482–1493 (2024).

    Google Scholar 

  19. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet 53, 895–905 (2021).

    Google Scholar 

  20. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Google Scholar 

  21. Cullot, G. et al. Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9. Nat. Commun. 14, 4072 (2023).

    Google Scholar 

  22. Boutin, J. et al. CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 12, 4922 (2021).

    Google Scholar 

  23. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Google Scholar 

  24. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Google Scholar 

  25. Zhu, M. et al. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR-Cas9-mediated genome editing. Nat. Biotechnol. 43, 799–810 (2024).

  26. Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286–289 (2019).

    Google Scholar 

  27. Iyer, V. et al. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. He L, editor. PLOS Genet 14, e1007503 (2018).

    Google Scholar 

  28. Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods 15, 512–514 (2018).

    Google Scholar 

  29. Port, F., Starostecka, M. & Boutros, M. Multiplexed conditional genome editing with Cas12a in Drosophila. Proc. Natl. Acad. Sci. USA 117, 22890–22899 (2020).

    Google Scholar 

  30. Zuo, E. et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27, 933–945 (2017).

    Google Scholar 

  31. Lukasiak, S. et al. A benchmark comparison of CRISPRn guide-RNA design algorithms and generation of small single and dual-targeting libraries to boost screening efficiency. BMC Genomics 26, 198 (2025).

    Google Scholar 

  32. Heigwer, F. et al. CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol. 17, 55 (2016).

    Google Scholar 

  33. Brunner, E. et al. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life. Sci. Alliance. https://www.life-science-alliance.org/content/2/3/e201800267 (2021).

  34. Garcia-Marques, J. et al. Unlimited genetic switches for cell-type-specific manipulation. Neuron 104, 227–238.e7 (2019).

    Google Scholar 

  35. Ewen-Campen, B. & Perrimon, N. Wnt signaling modulates the response to DNA damage in the Drosophila wing imaginal disc by regulating the EGFR pathway. PLoS Biol. 22, e3002547 (2024).

    Google Scholar 

  36. Friskes, A. et al. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res 50, 9930–9947 (2022).

    Google Scholar 

  37. Álvarez, M. M., Biayna, J. & Supek, F. TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat. Commun. 13, 4520 (2022).

    Google Scholar 

  38. Marygold, S. J. et al. The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biol. 8, R216 (2007).

    Google Scholar 

  39. Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    Google Scholar 

  40. Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR-Cas9–edited early human embryos. Proc. Natl. Acad. Sci. https://www.pnas.org/content/118/22/e2004832117 (2021).

  41. Regan, S. B. et al. Megabase-scale loss of heterozygosity provoked by CRISPR-Cas9 DNA double-strand breaks. Mol Cell. 85, 4119–4137.e10 (2025).

  42. Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352, 1113–1116 (2016).

    Google Scholar 

  43. Allen, S. E. et al. Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLOS Biol. 19, e3001061 (2021).

    Google Scholar 

  44. Loker, R. & Mann, R. S. Divergent expression of paralogous genes by modification of shared enhancer activity through a promoter-proximal silencer. Curr. Biol. CB 32, 3545–3555.e4 (2022).

    Google Scholar 

  45. Koreman, G.T. et al. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc. Natl. Acad. Sci. https://www.pnas.org/content/118/14/e2014255118 (2021).

  46. Lake, C. M., Nielsen, R. J. & Hawley, R. S. The Drosophila zinc finger protein trade embargo is required for double strand break formation in meiosis. PLoS Genet 7, e1002005 (2011).

    Google Scholar 

  47. Jones, S. K. et al. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84–93 (2021).

    Google Scholar 

  48. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Google Scholar 

  49. van den Berg J, G. et al. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res 46, 10132–10144 (2018).

    Google Scholar 

  50. Marshall, W. F. & Fung, J. C. Modeling homologous chromosome recognition via nonspecific interactions. Proc. Natl. Acad. Sci. 121, e2317373121 (2024).

    Google Scholar 

  51. Erceg, J. et al. The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. Nat. Commun. 10, 4486 (2019).

    Google Scholar 

  52. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Dev. Camb. Engl. 117, 1223–1237 (1993).

    Google Scholar 

  53. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001).

    Google Scholar 

  54. Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J. & Russell, R. Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a. Mol. Cell 71, 816–824.e3 (2018).

    Google Scholar 

  55. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    Google Scholar 

  56. Gantz, V. M. & Bier, E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    Google Scholar 

  57. Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. 115, 5522–5527 (2018).

    Google Scholar 

  58. Champer, S. E. et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525 (2020).

    Google Scholar 

  59. Bae, S., Kweon, J., Kim, H. S. & Kim, J. S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11, 705–706 (2014).

    Google Scholar 

  60. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22, 939–946 (2012).

    Google Scholar 

  61. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Google Scholar 

  62. Port, F. & Bullock, S. L. Creating heritable mutations in drosophila with CRISPR-Cas9. Methods Mol. Biol. Clifton NJ 1478, 145–160 (2016).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Ryan Loker and Richard Mann (Columbia University, USA) for plasmids and Erich Brunner (University of Zürich, Switzerland) for advice about the construction of the GRACE reporter. Roman Doll (University of Oxford, UK) for discussions and comments on the manuscript. Jianing Zhang, Nikola Knoll, Sophia Schelchshorn, Claudia Strein and Alma Spahic for assistance and discussions. The High-Throughput Sequencing Unit of the Genomics and Proteomics Core Facility and Light Microscopy Facility at DKFZ for support. This work has in part been supported by grants from the European Research Council (DECODE) and the German Research Foundation (SFB1324) to M.B.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes

  1. Jun Zhou

    Present address: The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, 410082, China

  2. Florian Heigwer

    Present address: Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany

Authors and Affiliations

  1. Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany

    Fillip Port, Martha A. Buhmann, Jun Zhou, Mona Stricker, Alexander Vaughan-Brown, Ann-Christin Michalsen, Eva Roßmanith, Amélie Pöltl, Lena Großkurth, Julia Huber, Laura B. Menendez Kury, Bea Weberbauer, Maria Hübl, Elli Puscher, Florian Heigwer & Michael Boutros

  2. Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany

    Fillip Port, Martha A. Buhmann, Jun Zhou, Mona Stricker, Alexander Vaughan-Brown, Ann-Christin Michalsen, Eva Roßmanith, Amélie Pöltl, Lena Großkurth, Julia Huber, Laura B. Menendez Kury, Bea Weberbauer, Maria Hübl, Elli Puscher, Florian Heigwer & Michael Boutros

  3. Department of Cell and Molecular Biology & BioQuant, Heidelberg University, Heidelberg, Germany

    Fillip Port, Martha A. Buhmann, Jun Zhou, Mona Stricker, Alexander Vaughan-Brown, Ann-Christin Michalsen, Eva Roßmanith, Amélie Pöltl, Lena Großkurth, Julia Huber, Laura B. Menendez Kury, Bea Weberbauer, Maria Hübl, Elli Puscher, Florian Heigwer & Michael Boutros

  4. Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany

    Martha A. Buhmann

Authors

  1. Fillip Port
  2. Martha A. Buhmann
  3. Jun Zhou
  4. Mona Stricker
  5. Alexander Vaughan-Brown
  6. Ann-Christin Michalsen
  7. Eva Roßmanith
  8. Amélie Pöltl
  9. Lena Großkurth
  10. Julia Huber
  11. Laura B. Menendez Kury
  12. Bea Weberbauer
  13. Maria Hübl
  14. Elli Puscher
  15. Florian Heigwer
  16. Michael Boutros

Contributions

F.P. and M.B. conceived the study. F.P., M.A.B., and J.Z. designed, performed and analyzed experiments. M.S., A.V.B., A.C.M., E.R., A.P., L.G., J.H., L.B.M.K., B.W., M.H., E.P. performed experiments. F.H. designed the sgRNA library and trained the Cellpose model. M.B. acquired funding. F.P. and M.B. supervised the work. F.P. wrote the paper. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Fillip Port or Michael Boutros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Darpan Medhi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Port, F., Buhmann, M.A., Zhou, J. et al. Improved in vivo gene knockout with high specificity using multiplexed Cas12a sgRNAs. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68434-z