Chemically modified and inactivated bacteria enable intra-biofilm drug delivery and long-term immunity against implant infections

chemically-modified-and-inactivated-bacteria-enable-intra-biofilm-drug-delivery-and-long-term-immunity-against-implant-infections
Chemically modified and inactivated bacteria enable intra-biofilm drug delivery and long-term immunity against implant infections
  • Choi, V., Rohn, J. L., Stoodley, P., Carugo, D. & Stride, E. Drug delivery strategies for antibiofilm therapy. Nat. Rev. Microbiol. 21, 555–572 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Mah, T. F. & O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ciofu, O., Moser, C., Jensen, P. O. & Hoiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Masters, E. A. et al. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 20, 385–400 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wouthuyzen-Bakker, M. et al. How to handle concomitant asymptomatic prosthetic joints during an episode of hematogenous periprosthetic joint infection, a multicenter analysis. Clin. Infect. Dis. 73, e3820–e3824 (2021).

    Article  PubMed  Google Scholar 

  • Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayles, K. W. The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5, 721–726 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Winstel, V., Kühner, P., Rohde, H. & Peschel, A. Genetic engineering of untransformable coagulase-negative staphylococcal pathogens. Nat. Protoc. 11, 949–959 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Gurbatri, C. R., Arpaia, N. & Danino, T. Engineering bacteria as interactive cancer therapies. Science 378, 858–864 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y. E. et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 380, 203–210 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stary, G. et al. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiaue, P. et al. Mathematical modeling for evaluating inherent parameters affecting UVC decontamination of indicator bacteria. Appl. Environ. Microbiol. 88, e0214821 (2022).

    Article  PubMed  Google Scholar 

  • Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Guo, G. et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano 14, 13391–13405 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Schilcher, K. & Horswill, A. R. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 84, e00026–00019 (2020).

    Article  Google Scholar 

  • Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e813 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Gao, L. et al. Orchestrating nitric oxide and carbon monoxide signaling molecules for synergistic treatment of MRSA infections. Angew. Chem. Int. Ed. 61, e202112782 (2022).

    Article  CAS  Google Scholar 

  • Wu, L., Bao, F., Li, L., Yin, X. & Hua, Z. Bacterially mediated drug delivery and therapeutics: strategies and advancements. Adv. Drug. Deliv. Rev. 187, 114363 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Dubnau, D. & Blokesch, M. Mechanisms of DNA uptake by naturally competent bacteria. Annu. Rev. Genet. 53, 217–237 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Huang, R. & Reusch, R. N. Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. J. Bacteriol. 177, 486–490 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aich, P., Patra, M., Chatterjee, A. K., Roy, S. S. & Basu, T. Calcium chloride made E. coli competent for uptake of extraneous DNA through overproduction of OmpC protein. Protein J. 31, 366–373 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7, 11220 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flemming, H. C. et al. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 21, 70–86 (2022).

    Article  PubMed  Google Scholar 

  • Davies, M. J. & Truscott, R. J. W. in Comprehensive Series in Photosciences Vol. 3 (ed. Giacomoni, P. U.) Ch. 12 (Elsevier, 2001).

  • Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Pasquina-Lemonche, L. et al. The architecture of the Gram-positive bacterial cell wall. Nature. 582, 294–297 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel, M., Andoy, N. M. O., Tran, S. M., Jeon, K. & Sullan, R. M. A. Different drug loading methods and antibiotic structure modulate the efficacy of polydopamine nanoparticles as drug nanocarriers. J. Mater. Chem. B 11, 11335–11343 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. et al. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Anal. Bioanal. Chem. 415, 1287–1298 (2022).

    Article  PubMed  Google Scholar 

  • Chang, L. et al. Micro-/nanoscale electroporation. Lab Chip 16, 4047–4062 (2016).

    Article  PubMed  CAS  Google Scholar 

  • Vajente, M., Clerici, R., Ballerstedt, H., Blank, L. M. & Schmidt, S. Using Cupriavidus necator H16 to provide a roadmap for increasing electroporation efficiency in nonmodel bacteria. ACS Synth. Biol. 14, 4330–4341 (2024).

  • Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Hamad, C. D. et al. Comparing the in vitro efficacy of commonly used surgical irrigants for the treatment of implant-associated infections. J. Bone Joint. Surg. Am. 107, 1818–1824 (2025).

  • Uberoi, A., McCready-Vangi, A. & Grice, E. A. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 22, 507–521 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sorribas, A., Poilvache, H. & Van Bambeke, F. Pharmacodynamics of moxifloxacin, meropenem, caspofungin, and their combinations against in vitro polymicrobial interkingdom biofilms. Antimicrob. Agents Chemother. 66, e0214921 (2022).

  • Vlaeminck, J. et al. The dynamic transcriptome during maturation of biofilms formed by methicillin-resistant Staphylococcus aureus. Front. Microb. 13, 882346 (2022).

    Article  Google Scholar 

  • Mishra, S. & Imlay, J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525, 145–160 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gehrke, T. et al. Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J. Knee Surg. 27, 399–406 (2014).

    Article  PubMed  Google Scholar 

  • Savage, V. J., Chopra, I. & O’Neill, A. J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57, 1968–1970 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Y. et al. CCR2 contributes to host defense against Staphylococcus aureus orthopedic implant-associated infections in mice. J. Orthop. Res. 40, 409–419 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • El Kasmi, K. C. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399–1406 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanke, M. L. & Kielian, T. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front. Cell. Infect. Microbiol. 2, 62 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbano, R. et al. Host nitric oxide disrupts microbial cell-to-cell communication to inhibit staphylococcal virulence. Cell Host Microbe 23, 594–606 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrett, W. S. Immune recognition of microbial metabolites. Nat. Rev. Immunol. 20, 91–92 (2020).

    Article  PubMed  CAS  Google Scholar 

  • Roewe, J. et al. Bacterial polyphosphates interfere with the innate host defense to infection. Nat. Commun. 11, 4035 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morita, N. et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 566, 110–114 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Thurlow, L. R. et al. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13, 100–107 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, C. et al. Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 13, 4866 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaskovich, M. A. T. et al. A lipoglycopeptide antibiotic for Gram-positive biofilm-related infections. Sci. Transl. Med. 14, eabj2381 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortes-Penfield, N. et al. How we approach suppressive antibiotic therapy following debridement, antibiotics, and implant retention for prosthetic joint infection. Clin. Infect. Dis. 78, 188–198 (2024).

    Article  PubMed  CAS  Google Scholar 

  • Ren, Y. et al. Evidence of bisphosphonate-conjugated sitafloxacin eradication of established methicillin-resistant S. aureus infection with osseointegration in murine models of implant-associated osteomyelitis. Bone Res. 11, 51 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzolini, R. et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 41, 1089–1098 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei, B., van den Berg, S., de Vogel, C. P., van Belkum, A. & Bakker-Woudenberg, I. A. J. M. Mild Staphylococcus aureus skin infection improves the course of subsequent endogenous S. aureus bacteremia in mice. PLoS ONE 10, e0129150 (2015).

    Article  Google Scholar 

  • Vincent, R. L. et al. Probiotic-guided CAR-T cells for solid tumor targeting. Science 382, 211–218 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, L. et al. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci. Adv. 6, eaba5723 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, J. et al. Inactive trojan bacteria as safe drug delivery vehicles crossing the blood–brain barrier. Nano Lett. 23, 4326–4333 (2023).

    Article  PubMed  CAS  Google Scholar 

  • Li, Z. et al. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater. 33, e2102580 (2021).

    Article  PubMed  Google Scholar 

  • Su, L. et al. Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilms. Acta Biomater. 154, 559–571 (2022).

    Article  PubMed  CAS  Google Scholar 

  • Damyanova, T. et al. Gram negative biofilms: structural and functional responses to destruction by antibiotic-loaded mixed polymeric micelles. Microorganisms 12, 2670 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildirim, T. et al. A new class of polyion complex vesicles (PIC-somes) to improve antimicrobial activity of tobramycin in Pseudomonas aeruginosa biofilms. Small 20, e2401926 (2024).

    Article  PubMed  Google Scholar 

  • Sedighi, O., Bednarke, B., Sherriff, H. & Doiron, A. L. Nanoparticle-based strategies for managing biofilm infections in wounds: a comprehensive review. ACS Omega 9, 27853–27871 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulaz, S., Vitale, S., Quinn, L. & Casey, E. Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27, 915–926 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Panthi, V. K., Fairfull-Smith, K. E. & Islam, N. Liposomal drug delivery strategies to eradicate bacterial biofilms: challenges, recent advances, and future perspectives. Int. J. Pharm. 655, 124046 (2024).

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y. et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 48, 428–446 (2019).

    Article  PubMed  CAS  Google Scholar 

  • Stacy, A., McNally, L., Darch, S. E., Brown, S. P. & Whiteley, M. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew, S. C. et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 5, e01536–01514 (2014).

    Article  Google Scholar 

  • Kim, W., Racimo, F., Schluter, J., Levy, S. B. & Foster, K. R. Importance of positioning for microbial evolution. Proc. Natl Acad. Sci. USA 111, E1639–E1647 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, L. et al. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 62, 339–347 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. L. & Reynolds, M. M. Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Zecconi, A. & Scali, F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett. 150, 12–22 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Scherr, T. D. et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. mBio 6, e01021–01015 (2015).

    Article  Google Scholar 

  • Alboslemy, T., Yu, B., Rogers, T., Kim, M.-H. & Freitag, N. E. Staphylococcus aureus biofilm-conditioned medium impairs macrophage-mediated antibiofilm immune response by upregulating KLF2 expression. Infect. Immun. 87, e00643–00618 (2019).

    Article  Google Scholar 

  • Marullo, R. et al. The metabolic adaptation evoked by arginine enhances the effect of radiation in brain metastases. Sci. Adv. 7, eabg1964 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ralph, A. P., Kelly, P. M. & Anstey, N. M. L-arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis. Trends Microbiol. 16, 336–344 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Rossato, A. M., Primon-Barros, M., Dias, C. A. G. & d’Azevedo, P. A. Vancomycin MIC and agr dysfunction in invasive MRSA infections in southern Brazil. Braz. J. Microbiol. 51, 1819–1823 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Britt, N. S., Hazlett, D. S., Horvat, R. T., Liesman, R. M. & Steed, M. E. Activity of pulmonary vancomycin exposures versus planktonic and biofilm isolates of methicillin-resistant Staphylococcus aureus from cystic fibrosis sputum. Int. J. Antimicrob. Agents 55, 105898 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz, R., Afreixo, V., Ramalheira, E., Rodrigues, C. & Gago, B. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections—a systematic review and meta-analysis. Clin. Microbiol. Infect. 24, 97–104 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Hartsell, E. M., Gillespie, M. N. & Langley, R. J. Does acute and persistent metabolic dysregulation in COVID-19 point to novel biomarkers and future therapeutic strategies? Eur. Clin. Respir. J. 59, 2102417 (2022).

    Article  CAS  Google Scholar 

  • Li, Y. et al. Untargeted metabolomics of saliva in caries-active and caries-free children in the mixed dentition. Front. Cell. Infect. Microbiol. 13, 1104295 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon, O. et al. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci. Transl. Med. 13, eabl6851 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, L. et al. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat. Biomed. Eng. 4, 1102–1116 (2020).

    Article  PubMed  CAS  Google Scholar