Comparative chemical and biological study of essential oils and n-hexane extracts of Thymus vulgaris and Thymus serpyllum (Lamiaceae)

comparative-chemical-and-biological-study-of-essential-oils-and-n-hexane-extracts-of-thymus-vulgaris-and-thymus-serpyllum-(lamiaceae)
Comparative chemical and biological study of essential oils and n-hexane extracts of Thymus vulgaris and Thymus serpyllum (Lamiaceae)

References

  1. El Yaagoubi, M. et al. A review on Moroccan thymus species: traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 278, 114205 (2021).

    Google Scholar 

  2. Asif, M., Saleem, M., Saadullah, M. & Yaseen, H. S. Al Zarzour, R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and Immunomodulatory properties. Inflammopharmacology 28, 1153–1161 (2020).

    Google Scholar 

  3. Paulus, D., Luchesi, L. A., Busso, C., Frata, M. T. & de Oliveira, P. J. B. Chemical composition, antimicrobial and antioxidant activities of essential oils of four species of the lamiaceae family. Eur. J. Med. Plants. 31, 129–140 (2020).

    Google Scholar 

  4. Hossain, M. A., Alrashdi, Y. B. A. & Al Touby A review on essential oil analyses and biological activities of the traditionally used medicinal plant thymus vulgaris L. Int. J. Secondary Metabolite. 9, 103–111 (2022).

    Google Scholar 

  5. Kianersi, F., Amin Azarm, D., Fatemi, F., Pour-Aboughadareh, A. & Poczai, P. Methyl jasmonate induces genes involved in Linalool accumulation and increases the content of phenolics in two Iranian coriander (Coriandrum sativum L.) ecotypes. Genes (Basel). 13, 1717 (2022).

    Google Scholar 

  6. Hudaib, M., Speroni, E., Di Pietra, A. M. & Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 29, 691–700 (2002).

    Google Scholar 

  7. Asadollahi-Baboli, M., Aghakhani, A. & Bikdeloo, V. Application of polyamide nanofibers, SPME/GC-MS, and chemometrics for comprehensive analysis of volatiles in thymus vulgaris L. And thymus serpyllum L. Food Anal. Methods. 9, 528–536 (2015).

    Google Scholar 

  8. Bharathy, P. & Thanikachalam, P. V. Harnessing traditional herbal medicine: molecular insights into diabetic wound healing for modern therapeutics. Digit. Chin. Med. 7, 388–404 (2024).

    Google Scholar 

  9. Hoca, M., Becer, E. & Vatansever, H. S. Carvacrol is potential molecule for diabetes treatment. Arch. Physiol. Biochem. 130, 823–830 (2024).

    Google Scholar 

  10. Nagoor Meeran, M. F., Javed, H., Taee, A., Azimullah, H., Ojha, S. K. & S. & Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 8, 380 (2017).

    Google Scholar 

  11. Li, L. J. et al. The crude ethanol extract of periplaneta Americana L. stimulates wound healing in vitro & in vivo. Chin. Med. 14, 1–9 (2019).

    Google Scholar 

  12. Gill, S. E. & Parks, W. C. Metalloproteinases and their inhibitors: regulators of wound healing. Int. J. Biochem. Cell. Biol. 40, 1334–1347 (2008).

    Google Scholar 

  13. Finnson, K. W., McLean, S., Di Guglielmo, G. M. & Philip, A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv. Wound Care (New Rochelle). 2, 195–214 (2013).

    Google Scholar 

  14. Aly, S. H. et al. GC/MS profiling of the essential oil And lipophilic extract of Moricandia Sinaica Boiss. And evaluation of their cytotoxic And antioxidant activities. Molecules 28, 2193 (2023).

    Google Scholar 

  15. AbdelRazek, M. M. M. et al. Bioactive secondary metabolites from fungal endophytes, penicillium oxalicum and phoma herbarum, associated with Morus Nigra and ficus sycomorus: an in Silico study. RSC Adv. 14, 36451–36460 (2024).

    Google Scholar 

  16. AbdelRazek, M. M. M. M., Moussa, A. Y., El-Shanawany, M. A. & Singab, A. N. B. A new phenolic alkaloid from halocnemum strobilaceum endophytes: Antimicrobial, antioxidant and biofilm inhibitory activities. Chem. Biodivers. 17, 1–9 (2020).

    Google Scholar 

  17. Subramanian, R., Asmawi, M. Z. & Sadikun, A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of andrographis paniculata extract and Andrographolide. Acta Biochim. Pol. 55, 391–398 (2008).

    Google Scholar 

  18. Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Google Scholar 

  19. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2. 0: new Docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61, 3891–3898 (2021).

    Google Scholar 

  20. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Google Scholar 

  21. Schönauer, E. et al. Discovery of a potent inhibitor class with high selectivity toward clostridial collagenases. J. Am. Chem. Soc. 139, 12696–12703 (2017).

    Google Scholar 

  22. Nar, H., Werle, K., Bauer, M. M. T., Dollinger, H. & Jung, B. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. J. Mol. Biol. 312, 743–751 (2001).

    Google Scholar 

  23. Holmes, I. P. et al. The identification of β-hydroxy carboxylic acids as selective MMP-12 inhibitors. Bioorg. Med. Chem. Lett. 19, 5760–5763 (2009).

    Google Scholar 

  24. Morales, R. et al. Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J. Mol. Biol. 341, 1063–1076 (2004).

    Google Scholar 

  25. Huang, D., Zhou, T., Lafleur, K., Nevado, C. & Caflisch, A. Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics 26, 198–204 (2010).

    Google Scholar 

  26. Taylor, S. S. & Kornev, A. P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem. Sci. 36, 65–77 (2011).

    Google Scholar 

  27. Bishop, A. C. A hot spot for protein kinase inhibitor sensitivity. Chem. Biol. 11, 587–589 (2004).

    Google Scholar 

  28. D’Abramo, M., Rabal, O., Oyarzabal, J. & Gervasio, F. L. Conformational selection versus induced fit in kinases: the case of PI3K-γ. Angew. Chem. 124, 666–670 (2012).

    Google Scholar 

  29. Olsson, T. S. G., Ladbury, J. E., Pitt, W. R. & Williams, M. A. Extent of enthalpy–entropy compensation in protein–ligand interactions. Protein Sci. 20, 1607–1618 (2011).

    Google Scholar 

  30. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer. 9, 28–39 (2009).

    Google Scholar 

  31. Niksic, H. et al. Cytotoxicity screening of thymus vulgaris L. essential oil in Brine shrimp nauplii and cancer cell lines. Sci. Rep. 11, 13178 (2021).

    Google Scholar 

  32. Preljević, K. et al. Comparative analysis of chemical profiles, antioxidant, antibacterial, and anticancer effects of essential oils of two thymus species from Montenegro. Fitoterapia 174, 105871 (2024).

    Google Scholar 

  33. Özay, C. & Pehlivan, E. Factors affecting the biosynthesis and accumulation of plant secondary metabolites. J. Fac. Pharm. Ankara. 48, 1248–1263 (2024).

    Google Scholar 

  34. George, S. et al. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells. BMC Complement. Altern. Med. 10, 52 (2010).

    Google Scholar 

  35. Cos, P., Vlietinck, A. J., Vanden Berghe, D. & Maes, L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106, 290–302 (2006).

    Google Scholar 

  36. Marchese, A. et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 210, 402–414 (2016).

    Google Scholar 

  37. Milosevic Markovic, M. et al. Cytotoxic effects of thymus serpyllum L. and Mentha× Piperita L. Essential oils on basal cell Carcinoma—An in vitro study. Life 15, 1296 (2025).

    Google Scholar 

  38. Galovičová, L. et al. Thymus serpyllum essential oil and its biological activity as a modern food preserver. Plants 10, 1416 (2021).

    Google Scholar 

  39. Salaria, D., Rolta, R., Lal, U. R., Dev, K. & Kumar V. A comprehensive review on traditional applications, phytochemistry, pharmacology, and toxicology of thymus serpyllum. Indian J. Pharmacol. 55, 385–394 (2023).

    Google Scholar 

  40. Mekkaoui, M. et al. Ethnopharmacological survey and comparative study of the healing activity of Moroccan thyme honey and its mixture with selected essential oils on two types of wounds on albino rabbits. Foods 11, 28 (2021).

    Google Scholar 

Download references