References
-
Mariod, A. A. & Jarret, R. L. Antioxidant, antimicrobial, and antidiabetic activities of Citrullus colocynthis seed oil. Multiple Biol. Activities Unconv. Seed Oils. 139–146. https://doi.org/10.1016/B978-0-12-824135-6.00005-2 (2022).
-
Carocho, M., Morales, P. & Ferreira, I. C. F. R. Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 71, 107–120. https://doi.org/10.1016/J.TIFS.2017.11.008 (2018).
-
Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – A review. J. Funct. Foods. 18, 820–897. https://doi.org/10.1016/J.JFF.2015.06.018 (2015).
-
Zhou, J. et al. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure, Food Chem. 288, 68–77, (2019). https://doi.org/10.1016/j.foodchem.2019.03.002
-
Wang, L. et al. Extraction methods for the releasing of bound phenolics from rubus Idaeus L. leaves and seeds. Ind. Crops Prod. 135, 1–9. https://doi.org/10.1016/j.indcrop.2019.04.003 (2019).
-
Zhang, B., Zhang, Y., Li, H., Deng, Z. & Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives, Trends Food Sci. Technol., vol. 105, pp. 347–362, Nov. (2020). https://doi.org/10.1016/j.tifs.2020.09.029
-
Arshad, A. et al. Dec., In vitro enzyme inhibition, antibacterial, UHPLC-MS chemical profiling and in silico studies of Indigofera argentea Burm. f. for potential biopharmaceutical application, South Afr. J. Bot., 143, 322–329 https://doi.org/10.1016/J.SAJB.2020.12.001 (2021).
-
Bezerra, J. N. et al. Chemical composition, evaluation of antiparasitary and cytotoxic activity of the essential oil of psidium brownianum MART EX. DC. Biocatal. Agric. Biotechnol. 39, 102247. https://doi.org/10.1016/J.BCAB.2021.102247 (2022).
-
Kouadri, I. & Satha, H. Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds, Ind. Crops Prod. 124, 787–796 https://doi.org/10.1016/J.INDCROP.2018.08.051 (2018).
-
Rumpf, J., Burger, R. & Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 233 https://doi.org/10.1016/j.ijbiomac.2023.123470 (2023).
-
Oragwu, I. P. & SOLVENT-EXTRACTED WATERMELON SEED OIL. (Citrulus Vulgaris) AND APPLICATION IN SKIN-CARE PRODUCTS. COOU J. Phys. Ciences, 3, 1, (2020).
-
Sharma, V. et al. Sequential ultrasound assisted deep eutectic solvent-based protein extraction from Sacha Inchi meal biomass: towards circular bioeconomy. J. Food Sci. Technol. 60 (4). https://doi.org/10.1007/s13197-023-05689-0 (2023).
-
Okene, E. O. & Evbuomwan, B. O. Solvent extraction and characterization of oil from coconut seed using alternative solvents. Int. J. Eng. Tech. Res. (IJETR), 2, 12, (2014).
-
Sultana, B., Anwar, F. & Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14 (6). https://doi.org/10.3390/molecules14062167 (2009).
-
Ishak, I., Ghani, M. A. & Yuen, J. Z. Effects of extraction solvent and time on the oil yield, total phenolic content, carotenoid and antioxidant activity of Australian Chia seed (Salvia Hispanica L.) oil. Food Res. 4 https://doi.org/10.26656/fr.2017.4(S4).006 (2020).
-
Chouaibi, M., Rigane, K. & Ferrari, G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind. Crops Prod. 158 https://doi.org/10.1016/j.indcrop.2020.113002 (2020).
-
Shetty, K. & McCue, P. Phenolic antioxidant biosynthesis in plants for functional food application: integration of systems biology and biotechnological approaches, (2003). https://doi.org/10.1081/FBT-120023073
-
Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods, (2020). https://doi.org/10.1111/jfbc.13394
-
Bullo, T. A. Extraction and characterization of oil from avocado peels. International J. Chem. Mol. Engineering, 15, 2, (2021).
-
Yu, X. et al. Royal jelly fatty acids: chemical Composition, Extraction, biological Activity, and prospect. J. Funct. Foods. 111, 105868. https://doi.org/10.1016/J.JFF.2023.105868 (Dec. 2023).
-
Karrar, E. et al. Docosahexaenoic acid and eicosapentaenoic acid from microalgae: Extraction, purification, separation, and analytical methods, (2024). https://doi.org/10.1016/j.algal.2023.103365
-
Reungoat, V., Chadni, M. & Ioannou, I. Response surface methodology applied to the optimization of phenolic compound extraction from brassica. Response Surf. Methodol. Eng. Sci. https://doi.org/10.5772/intechopen.97655 (2021).
-
Fadjare Frempong, T., Owusu Boadi, N. & Badu, M. Optimization of extraction conditions for polyphenols from the stem bark of funtumia elastica (Funtum) utilizing response surface methodology. AAS Open. Res. 4 https://doi.org/10.12688/aasopenres.13284.2 (2021).
-
Prasad, K. N., Kong, K. W., Ramanan, R. N., Azlan, A. & Ismail, A. Selection of experimental domain using Two-Level factorial design to determine extract Yield, antioxidant Capacity, Phenolics, and flavonoids from mangifera Pajang Kosterm. Sep. Sci. Technol. (Philadelphia). 47 (16). https://doi.org/10.1080/01496395.2012.672511 (2012).
-
Ahmed, M. et al. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis Sativa L., Appl. Ecol. Environ. Res., vol. 17, no. 3, (2019). https://doi.org/10.15666/aeer/1703_69616979
-
Chen, G. L., Zhang, X., Chen, S. G., Han, M. D. & Gao, Y. Q. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China, J. Funct. Foods, vol. 30, pp. 290–302, Mar. (2017). https://doi.org/10.1016/J.JFF.2017.01.011
-
Hinkelmann, K. Design and Analysis of Experiments, vol. 3. (2012). https://doi.org/10.1002/9781118147634
-
Box, G. E. P. & Wilson, K. B. On the Experimental Attainment of Optimum Conditions, J R Stat Soc Series B Stat Methodol, 13 (1), (1951). https://doi.org/10.1111/j.2517-6161. 1951.tb00067. x.
-
Harrington, E. C., Pay, A., Hall, C., Mccall, T. & Mccall, T. The desirability function. Industrial Qual. Control, 21, 10, (1965).
-
De Santana, L. B., Rodrigues, V. F. & de Sampaio, N. A. Simultaneous optimization response surface experiments with several response variables. Revista De Gestão E Secretariado (Management Administrative Prof. Review). 14 (6). https://doi.org/10.7769/gesec.v14i6.2310 (2023).
-
Cardoso, R. P., da Reis, J. S., Silva, D. E. W., De Barros, J. G. M. & de Sampaio, N. A. How to perform a simultaneous optimization with several response variables. Revista De Gestão E Secretariado. 14 (1). https://doi.org/10.7769/gesec.v14i1.1536 (2023).
-
Derringer, G. & Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 12 (4). https://doi.org/10.1080/00224065.1980.11980968 (1980).
-
Yuxuan, G. et al. Optimization of Ethanol-Based extraction process for Duliang formula by central composite design and response surface methodology. Nat. Prod. Commun. 17 (12). https://doi.org/10.1177/1934578X221142719 (2022).
-
Jiménez-Moreno, N., Volpe, F., Moler, J. A., Esparza, I. & Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 8 (12). https://doi.org/10.3390/antiox8120597 (2019).
-
Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal. Biochem. 239 (1). https://doi.org/10.1006/abio.1996.0292 (1996).
-
Elboughdiri, N. Effect of Time, Solvent-Solid Ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from Olive leaves. Eng. Technol. Appl. Sci. Res. 8 (2). https://doi.org/10.48084/etasr.1983 (2018).
-
Mbah, G. O., Amulu, N. F. & Onyiah, M. I. Effects of process parameters on the yield of oil from melon seed (Colocynthis citrullus). Pac. J. Sci. Technology, 43, 2, (2014).
-
Mukesh Kr et al. Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils. Int. J. Res. Appl. Sci. Biotechnol. 9 (3). https://doi.org/10.31033/ijrasb.9.3.6 (2022).
-
Da Silva, D. C. C. & Pietrobelli, J. M. T. D. A. Residual biomass of Chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. J. Environ. Chem. Eng. 7 (2). https://doi.org/10.1016/j.jece.2019.103008 (2019).
-
Haile, M., Duguma, H. T., Chameno, G. & Kuyu, C. G. Effects of location and extraction solvent on physico chemical properties of Moringa stenopetala seed oil. Heliyon 5 (11), e02781 (2019).
-
Best, I., Cartagena-Gonzales, Z., Arana-Copa, O., Olivera-Montenegro, L. & Zabot, G. Production of oil and Phenolic-Rich extracts from mauritia flexuosa L.f. Using sequential supercritical and conventional solvent extraction: experimental and economic Evaluation†. Processes 10 (3). https://doi.org/10.3390/pr10030459 (2022).
-
Yusuff, A. S. Extraction, optimization, and characterization of oil from green microalgae chlorophyta species. Energy Sources Part. A: Recovery Utilization Environ. Eff. 45 (3). https://doi.org/10.1080/15567036.2019.1676327 (2023).
-
Joven, J. M. O. et al. Optimized ultrasonic-assisted oil extraction and biodiesel production from the seeds of maesopsis eminii. Ind. Crops Prod. 155 https://doi.org/10.1016/j.indcrop.2020.112772 (2020).
-
Gumaling, R. P. et al. Optimized bio-oil yield from Swietenia macrophylla seeds via ultrasonic cavitation through response surface methodology. Energy Ecol. Environ. 3 (5). https://doi.org/10.1007/s40974-018-0098-7 (2018).
-
Matei, P. L. et al. Ultrasound-Assisted extraction of blackberry seed oil: optimization and oil characterization. Molecules 28 (6). https://doi.org/10.3390/molecules28062486 (2023).
-
Chavan, S. B., Kumbhar, R. R. & Sharma, Y. C. Transesterification of Citrullus colocynthis (Thumba) oil: optimization for biodiesel production. Adv. Appl. Sci. Research, 5, 3, (2014).
-
Fadjare Frempong, T., Owusu Boadi, N. & Badu, M. Optimization of extraction conditions for polyphenols from the stem bark of funtumia elastica (Funtum) utilizing response surface methodology. AAS Open. Res. 4 https://doi.org/10.12688/aasopenres13284.1 (2021).
-
Thamer, F. H. et al. Antioxidant Capacity, total phenol contents and phytochemical screening of Citrullus colocynthis Crust, pulp and seeds extracts. Am. J. Biochem. Biotechnol. 19 (1). https://doi.org/10.3844/ajbbsp2023.12.19 (2023).
-
Chouaibi, M., Rigane, K. & Ferrari, G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind. Crops Prod. 158, 113002. https://doi.org/10.1016/J.INDCROP.2020.113002 (2020).
-
Ben Mansour, R. et al. The use of response surface methodology to optimize assisted extraction of bioactive compounds from Cucurbita maxima fruit By-Products. Processes 11 (6). https://doi.org/10.3390/pr11061726 (2023).
-
Kamal, N. A. S. S. et al. Response surface methodology for optimization of citrullus lanatus rind extraction Conditions, phytochemical screening and its antioxidant activities. Trends Sci. 20, 10. (2023).
-
Karami, Z. et al. Optimization of microwave-assisted extraction (MAE) and Soxhlet extraction of phenolic compounds from licorice root. J. Food Sci. Technol. 52 (6). https://doi.org/10.1007/s13197-014-1384-9 (2015).
-
Zulkifli, S. A., Gani, S. S. A., Zaidan, U. H. & Halmi, M. I. E. Optimization of total phenolic and flavonoid contents of defatted Pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties. Molecules 25 (4). https://doi.org/10.3390/molecules25040787 (2020).
-
Salah Eldeen Hassan, A. M., Rashed, M. M., Mahmoud, M. A. & RADWAN, E. M. M. Biochemical and toxicological effects of Citrullus colocynthis (L.) seed oil (extracted by three different methods) on the Potato tuber moth, Phthorimaea operculella (Zeller)., Egypt. Pharmac. J. (2025). https://doi.org/10.21608/epj.2025.396378.1131
-
Khan, M. et al. Diversity of Citrullus colocynthis (L.) Schrad seeds extracts: detailed chemical profiling and evaluation of their medicinal properties. Plants 12 (3), 567. https://doi.org/10.3390/plants12030567 (2023).
-
Rezagholizade-shirvan, A., Shokri, S., Dadpour, S. M. & Amiryousefi, M. R. Evaluation of physicochemical, antioxidant, antibacterial activity, and sensory properties of watermelon rind candy, Heliyon 9 (6), (2023). https://doi.org/10.1016/j.heliyon.2023.e17300
