References
-
Jin, Y. et al. Advances in spatial transcriptomics and its applications in cancer research. Mol. Cancer 23, 129 (2024).
-
Jung, N. & Kim, T. K. yung Spatial transcriptomics in neuroscience. Exp. Mol. Med. 55, 2105–2115 (2023).
-
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
-
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).
-
Wang, I.-H. et al. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat. Neurosci. 25, 484–492 (2022).
-
Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).
-
Xu, Y. et al. sccad: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data. Nat. Commun. 15, 7561 (2024).
-
Wang, X. et al. Marsgt: multi-omics analysis for rare population inference using single-cell graph transformer. Nat. Commun. 15, 338 (2024).
-
Märtens, K. et al. Rarity: discovering rare cell populations from single-cell imaging data. Bioinformatics 39, btad750 (2023).
-
Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).
-
Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Genome Med. 16, 12 (2021).
-
Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).
-
Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat. Commun. 14, 1155 (2023).
-
Varrone, M., Tavernari, D., Santamaria-Martínez, A., Walsh, L. A. & Ciriello, G. Cellcharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. Nat. Genet. 56, 74–84 (2024).
-
Singhal, V. et al. Banksy unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431–441 (2024).
-
Jindal, A., Gupta, P., Jayadeva & Sengupta, D. Discovery of rare cells from voluminous single cell expression data. Nat. Commun. 9, 4719 (2018).
-
Fa, B. et al. Gapclust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles. Nat. Commun. 12, 4197 (2021).
-
Schwartz, G. W. et al. Toomanycells identifies and visualizes relationships of single-cell clades. Nat. Methods 17, 405–413 (2020).
-
Jiang, L., Chen, H., Pinello, L. & Yuan, G. uo-C. heng Giniclust: detecting rare cell types from single-cell gene expression data with gini index. Genome Biol. 17, 1–13 (2016).
-
Liang, S. et al. Single-cell manifold-preserving feature selection for detecting rare cell populations. Nat. Comput. Sci. 1, 374–384 (2021).
-
Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 1–31 (2021).
-
Zhao, E. et al. Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39, 1375–1384 (2021).
-
Xu, H. et al. Spacel: deep learning-based characterization of spatial transcriptome architectures. Nat. Commun. 14, 7603 (2023).
-
Zhang, Q. et al. Leveraging spatial transcriptomics data to recover cell locations in single-cell rna-seq with celery. Nat. Commun. 14, 4050 (2023).
-
Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18, 1352–1362 (2021).
-
Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).
-
Brody, S., Alon, U. & Yahav, E. How attentive are graph attention networks? In The Tenth International Conference on Learning Representations (ICLR 2022), Virtual Event, April 25–29, 2022. OpenReview.net (2022).
-
Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 1–9 (2019).
-
Zhang, Y. et al. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of covid-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS 19, 46 (2022).
-
Tantry, M. S. A. & Santhakumar, K. Insights on the role of α-and β-tubulin isotypes in early brain development. Mol. Neurobiol. 60, 3803–3823 (2023).
-
Yasui, D. H. et al. Mecp2 modulates gene expression pathways in astrocytes. Mol. Autism 4, 1–11 (2013).
-
Hoshiba, Y. et al. Sox11 balances dendritic morphogenesis with neuronal migration in the developing cerebral cortex. J. Neurosci. 36, 5775–5784 (2016).
-
Schneider, C., Krischke, G., Rascher, W., Gassmann, M. & Trollmann, R. Systemic hypoxia differentially affects neurogenesis during early mouse brain maturation. Brain Dev. 34, 261–273 (2012).
-
Cheung, M., Abu-Elmagd, M., Clevers, H. & Scotting, P. J. Roles of sox4 in central nervous system development. Mol. Brain Res. 79, 180–191 (2000).
-
Steele-Perkins, G. et al. The transcription factor gene NFIB is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).
-
Qiu, X. et al. Spatiotemporal modeling of molecular holograms. Cell 187, 7351–7373.e61 (2024).
-
Maaten, L. V. D. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
-
Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).
-
Chen, S.-K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).
-
Wei, X. et al. Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444 (2022).
-
Li, H. et al. Santo: a coarse-to-fine alignment and stitching method for spatial omics. Nat. Commun. 15, 6048 (2024).
-
Xia, C.-R., Cao, Z.-J., Tu, X.-M. & Gao, G. Spatial-linked alignment tool (slat) for aligning heterogenous slices. Nat. Commun. 14, 7236 (2023).
-
Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).
-
Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).
-
Tang, Z. et al. Search and match across spatial omics samples at single-cell resolution. Nat. methods 21, 1818–1829 (2024).
-
Chen, X., Fischer, S., Zhang, A., Gillis, J. & Zador, A. Modular cell type organization of cortical areas revealed by in situ sequencing. BioRxiv, https://doi.org/10.1101/2022.11.06.515380 (2022).
-
Oliveira, M. F. et al. High-definition spatial transcriptomic profiling of immune cell populations in colorectal cancer. Nat. Genet. 57, 1512–1523 (2025).
-
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
-
Rodia, M. T. et al. Lgals4, ceacam6, tspan8, and col1a2: blood markers for colorectal cancer-validation in a cohort of subjects with positive fecal immunochemical test result. Clin. Colorectal Cancer 17, e217–e228 (2018).
-
Astrosini, C. et al. Reg1a expression is a prognostic marker in colorectal cancer and associated with peritoneal carcinomatosis. Int. J. Cancer 123, 409–413 (2008).
-
Zhou, M. et al. N6-methyladenosine modification of Reg1α facilitates colorectal cancer progression via β-catenin/Myc/LDHA axis mediated glycolytic reprogramming. Cell Death Dis. 14, 557 (2023).
-
Ye, Y. et al. Up-regulation of reg3a in colorectal cancer cells confers proliferation and correlates with colorectal cancer risk. Oncotarget 7, 3921 (2015).
-
Thapa, N., Lee, B.-H. & Kim, I.-S. Tgfbip/βig-h3 protein: a versatile matrix molecule induced by tgf-β. Int. J. Biochem. Cell Biol. 39, 2183–2194 (2007).
-
Bae, J.-S. et al. βig-h3 supports keratinocyte adhesion, migration, and proliferation through α3β1 integrin. Biochem. Biophys. Res. Commun. 294, 940–948 (2002).
-
Thapa, N., Kang, K.-B. & Kim, I.-S. βig-h3 mediates osteoblast adhesion and inhibits differentiation. Bone 36, 232–242 (2005).
-
Bani-Yaghoub, M. et al. Role of sox2 in the development of the mouse neocortex. Dev. Biol. 295, 52–66 (2006).
-
Bulfone, A. et al. T-brain-1: a homolog of brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).
-
Pei, Z. et al. Homeobox genes gsx1 and gsx2 differentially regulate telencephalic progenitor maturation. Proc. Natl. Acad. Sci. 108, 1675–1680 (2011).
-
Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of alzheimer’s disease. Nat. Neurosci. 26, 430–446 (2023).
-
Hong, S. et al. Complement and microglia mediate early synapse loss in alzheimer mouse models. Science 352, 712–716 (2016).
-
Leng, F. & Edison, P. Neuroinflammation and microglial activation in alzheimer disease: where do we go from here?. Nat. Rev. Neurol. 17, 157–172 (2021).
-
Meda, L., Baron, P. & Scarlato, G. Glial activation in alzheimer’s disease: the role of aβ and its associated proteins. Neurobiol. aging 22, 885–893 (2001).
-
Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. methods 19, 171–178 (2022).
-
Carter, S. F. et al. Astrocyte biomarkers in alzheimer’s disease. Trends Mol. Med. 25, 77–95 (2019).
-
Cai, Z., Wan, C.-Q. & Liu, Z. Astrocyte and alzheimer’s disease. J. Neurol. 264, 2068–2074 (2017).
-
Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 31, 1843–1855 (2021).
-
Application Note – Exploring Alzheimer’s-like pathology at subcellular resolution using Xenium In Situ, Document Number LIT000210, 10x Genomics, (2023).
-
Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).
-
Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).
-
Munoz-Erazo, L., Rhodes, J. L., Marion, V. C. & Kemp, R. A. Tertiary lymphoid structures in cancer–considerations for patient prognosis. Cell. Mol. Immunol. 17, 570–575 (2020).
-
Liu, Y. et al. Single-cell and spatial transcriptome analyses reveal tertiary lymphoid structures linked to tumour progression and immunotherapy response in nasopharyngeal carcinoma. Nat. Commun. 15, 7713 (2024).
-
Chen, Y.-P. et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 30, 1024–1042 (2020).
-
Hu, J. et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with Tesla. Cell Syst. 14, 404–417 (2023).
-
Ding, N. et al. Dynamic single-cell profiling reveals novel immune regulatory mechanism of ITK inhibitor soquelitinib in refractory T cell lymphoma. Blood 142, 1442 (2023).
-
Wu, Y. et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell 187, 1422–1439 (2024).
-
Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).
-
Kaser, A. et al. B lymphocyte-derived IL-16 attracts dendritic cells and TH cells. J. Immunol. 165, 2474–2480 (2000).
-
Vulcano, M. et al. Unique regulation of ccl18 production by maturing dendritic cells. J. Immunol. 170, 3843–3849 (2003).
-
Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32, 9240–9251 (2019).
-
Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. cell 182, 497–514 (2020).
-
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
-
Fang, S. et al. Stereopy: modeling comparative and spatiotemporal cellular heterogeneity via multi-sample spatial transcriptomics. Nat. Commun. 16, 3741 (2025).
-
Mlacki, M., Darido, C., Jane, S. M. & Wilanowski, T. Loss of grainy head-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin. PLoS ONE 9, e89247 (2014).
-
Janesick, A. et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023).
-
Gehan, E. A. A generalized wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52, 203–224 (1965).
-
Tang, Z. et al. Gepia: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids Res. 45, W98–W102 (2017).
-
Zeng, Z. et al. Omicverse: a framework for bridging and deepening insights across bulk and single-cell sequencing. Nat. Commun. 15, 5983 (2024).
-
Qian, B.-Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).
-
DeTomaso, D. & Yosef, N. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Syst. 12, 446–456 (2021).
-
Pan, Y. et al. Analysis of differential gene expression profile identifies novel biomarkers for breast cancer. Oncotarget 8, 114613 (2017).
-
Rennhack, J. P. et al. Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat. Commun. 10, 3261 (2019).
-
Xu, K. et al. Single-cell rna sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10, 66 (2021).
-
Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).
-
Granja, J. M. et al. Archr is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).
-
Weed, N. et al. Identification of genetic markers for cortical areas using a random forest classification routine and the allen mouse brain atlas. PLoS ONE 14, e0212898 (2019).
-
Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1–5 (2018).
-
Guo, X., Gao, L., Liu, X. & Yin, J. Improved deep embedded clustering with local structure preservation. Ijcai 17, 1753–1759 (2017).
-
Wang, T. et al. Graph attention automatic encoder based on contrastive learning for domain recognition of spatial transcriptomics. Commun. Biol. 7, 1351 (2024).
-
Feng, W. et al. Graph random neural networks for semi-supervised learning on graphs. Adv. neural Inf. Process. Syst. 33, 22092–22103 (2020).
-
Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R. J. 8, 289 (2016).
-
Traag, V. A., Waltman, L. & Van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
-
Vincent, D. B. et al. Fast unfolding of communities in large networks. J. Stat. Mech.: theory Exp. 2008, P10008 (2008).
-
Yu, Q. et al. Joint optimal transport and embedding for network alignment. In Proceedings of the ACM on Web Conference 2025 (WWW 2025), Sydney, NSW, Australia, 28 April–2 May 2025. 2064–2075 (ACM, 2025).
-
Peyré, G. et al. Computational optimal transport: with applications to data science. Found. Trends® Mach. Learn. 11, 355–607 (2019).
-
Hofmann, T. Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, USA, August 15–19, 1999. 50–57 (ACM, 1999).
-
Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues. Nat. Commun. 14, 7739 (2023).
-
Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).
-
Qian, J. et al. Simulating multiple variability in spatially resolved transcriptomics with sccube. Nat. Commun. 15, 5021 (2024).
-
Stassen, S. V., Yip, G. G., Wong, K. K. Y., Ho, J. W. K. & Tsia, K. K. Generalized and scalable trajectory inference in single-cell omics data with via. Nat. Commun. 12, 5528 (2021).
-
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterprofiler: an r package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
-
Thompson, C. L. et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014).
-
Wang, Q. et al. The allen mouse brain common coordinate framework: a 3D reference atlas. Cell 181, 936–953 (2020).
-
Zhang, X. & Li, X. Robust characterization and interpretation of rare pathogenic cell populations from spatial omics using GARDEN. Briskzxm/GARDEN. https://figshare.com/articles/dataset/GARDEN/28219010 (2025).
-
Zhang, X. Robust characterization and interpretation of rare pathogenic cell populations from spatial omics using GARDEN. Briskzxm/GARDEN. https://zenodo.org/records/17936255 (2025).
