The oleaginous yeast Cutaneotrichosporon oleaginosum modifies corn stover alkali lignin

the-oleaginous-yeast-cutaneotrichosporon-oleaginosum-modifies-corn-stover-alkali-lignin
The oleaginous yeast Cutaneotrichosporon oleaginosum modifies corn stover alkali lignin

References

  1. Wang, H., Pu, Y., Ragauskas, A. & Yang, B. From lignin to valuable products–strategies, challenges, and prospects. Bioresour Technol. 271, 449–461 (2019).

    Google Scholar 

  2. Grgas, D. et al. The bacterial degradation of Lignin—A review. Water 15, 1272 (2023).

    Google Scholar 

  3. Davis, R. E. et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case Update; biochemical Deconstruction and conversion of biomass to fuels and products via integrated biorefinery pathways (2018). National Renewable Energy Laboratory, Golden, CO. NREL/TP-5100-71949.

  4. Sale, K. et al. Synthetic Microbial Consortium for Biological Breakdown and Conversion of Lignin Sandia National Laboratories, Albuquerque, NM. SAND2022-131. (2022).

  5. Saini, S. & Sharma, K. K. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int. J. Biol. Macromol. 193, 2304–2319 (2021).

    Google Scholar 

  6. Granja-Travez, R. S., Persinoti, G. F., Squina, F. M. & Bugg, T. D. H. Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Appl. Microbiol. Biotechnol. 104, 3305–3320 (2020).

    Google Scholar 

  7. Schick Zapanta, L. & Tien, M. The roles of Veratryl alcohol and oxalate in fungal lignin degradation. J. Biotechnol. 53, 93–102 (1997).

    Google Scholar 

  8. Shin, S. K., Ko, Y. J., Hyeon, J. E. & Han, S. O. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. Bioresour Technol. 289, 121728 (2019).

    Google Scholar 

  9. Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962 (2017).

    Google Scholar 

  10. Brink, D. P., Ravi, K., Lidén, G. & Gorwa-Grauslund, M. F. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl. Microbiol. Biotechnol. 103, 3979–4002 (2019).

    Google Scholar 

  11. Hainal, A. R., Capraru, A. M., Volf, I. & Popa, V. I. Lignin as a carbon source for the cultivation of some Rhodotorula species. Cellul Chem. Technol 87–96 (2012).

  12. Sláviková, E. & Košíková, B. Modification of lignin by Geotrichum Klebahnii. World J. Microbiol. Biotechnol. 17, 1–3 (2001).

    Google Scholar 

  13. Sláviková, E., Košíková, B. & Mikulášová, M. Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans. Can. J. Microbiol. 48, 200–203 (2002).

    Google Scholar 

  14. Broos, W. et al. Evaluation of lignocellulosic wastewater valorization with the oleaginous yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. Fermentation 8, 204 (2022).

    Google Scholar 

  15. Wakil, S. et al. Production, characterization and purification of laccase by yeasts isolated from ligninolytic soil. J. Pure Appl. Microbiol. 11, 847–869 (2017).

    Google Scholar 

  16. Ali, S. S. et al. Coupling Azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnol. Biofuels. 14, 61 (2021).

    Google Scholar 

  17. Ali, S. S., Al-Tohamy, R. & Sun, J. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for Azo dye decolorization and detoxification. Sci. Total Environ. 806, 150665 (2022).

    Google Scholar 

  18. Ai, M., Zhu, Y. & Jia, X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J. Microbiol. Biotechnol. 37, 2 (2021).

    Google Scholar 

  19. Braun, M. K. et al. Catalytic decomposition of the oleaginous yeast Cutaneotrichosporon oleaginosus and subsequent biocatalytic conversion of liberated free fatty acids. ACS Sustain. Chem. Eng. 7, 6531–6540 (2019).

    Google Scholar 

  20. Sawpan, M. A. Polyurethanes from vegetable oils and applications: a review. J. Polym. Res. 25, 184 (2018).

    Google Scholar 

  21. Patel, A. et al. An overview of potential oleaginous microorganisms and their role in biodiesel and Omega-3 fatty acid-based industries. Microorganisms 8, (2020).

  22. Yaguchi, A., Robinson, A., Mihealsick, E. & Blenner, M. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb. Cell. Factories. 16, 206 (2017).

    Google Scholar 

  23. Bracharz, F., Beukhout, T., Mehlmer, N. & Brück, T. Opportunities and challenges in the development of Cutaneotrichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils. Microb. Cell. Factories. 16, 178 (2017).

    Google Scholar 

  24. Yaguchi, A., Rives, D. & Blenner, M. New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiol. 3, 227–247 (2017).

    Google Scholar 

  25. Yaguchi, A. Development of Cutaneotrichosporon Oleaginosus To Convert Lignin-Derived Phenolics To Oleochemicals (Clemson University, 2020).

  26. Li, X., Li, M., Pu, Y., Ragauskas, A. J. & Zheng, Y. Black liquor valorization by using marine protist Thraustochytrium striatum and the preliminary metabolic mechanism study. ACS Sustain. Chem. Eng. 8, 1786–1796 (2020).

    Google Scholar 

  27. Wang, W., Chen, X., Katahira, R. & Tucker, M. Characterization and Deconstruction of oligosaccharides in black liquor from deacetylation process of corn Stover. Front. Energy Res. 7, 54 (2019).

    Google Scholar 

  28. Vilela, N. et al. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production. Biotechnol. Biofuels Bioprod. 16, 5 (2023).

    Google Scholar 

  29. He, Y., Li, X., Ben, H., Xue, X. & Yang, B. Lipid production from dilute alkali corn Stover lignin by Rhodococcus strains. ACS Sustain. Chem. Eng. 5, 2302–2311 (2017).

    Google Scholar 

  30. Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. 116, 23117–23123 (2019).

  31. Fujita, M. et al. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2, 1–10 (2019).

    Google Scholar 

  32. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D. & Vardon, D. R. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016).

    Google Scholar 

  33. Michalska, K. et al. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J. Mol. Biol. 423, 555–575 (2012).

    Google Scholar 

  34. Ozbek, O. & Ulgen, O. Ileri Ercan, N. The toxicity of Polystyrene-Based nanoparticles in Saccharomyces cerevisiae is associated with nanoparticle charge and uptake mechanism. Chem. Res. Toxicol. 34, 1055–1068 (2021).

    Google Scholar 

  35. Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant. J. 102, 1074–1089 (2020).

    Google Scholar 

  36. Hawkins, S. & Boudet, A. Wound-induced lignin and Suberin deposition in a Woody angiosperm (Eucalyptus Gunnii Hook.): histochemistry of early changes in young plants. Protoplasma 191, 96–104 (1996).

    Google Scholar 

  37. Gill, C. O., Hall, M. J. & Ratledge, C. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl. Environ. Microbiol. 33, 231–239 (1977).

    Google Scholar 

  38. Hansson, L. & Dostálek, M. Lipid formation by Cryptococcus albidus in nitrogen-limited and in carbon-limited Chemostat cultures. Appl. Microbiol. Biotechnol. 24, 187–192 (1986).

    Google Scholar 

  39. Lankiewicz, T. S. et al. Lignin Deconstruction by anaerobic fungi. Nat. Microbiol. 8, 596–610 (2023).

    Google Scholar 

  40. Chua, M. G. S., Chen, C. L., Chang, H. M. & Kirk, T. K. 13 C NMR Spectroscopic Study of Spruce Lignin Degraded Phanerochaete chrysosporium. Holzforschung 36, 165–172 (1982).

  41. Yelle, D. J., Wei, D., Ralph, J. & Hammel, K. E. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ. Microbiol. 13, 1091–1100 (2011).

    Google Scholar 

  42. Oates, N. C. et al. A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1. Proc. Natl. Acad. Sci. 118, e2008888118 (2021).

  43. Awad, D. & Brueck, T. Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal. Bioanal Chem. 412, 449–462 (2020).

    Google Scholar 

  44. Fuchs, T. et al. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb. Cell. Factories. 20, 205 (2021).

    Google Scholar 

  45. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein Language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Google Scholar 

  46. Barrett, K., Hunt, C. J., Lange, L. & Meyer, A. S. Conserved unique peptide patterns (CUPP) online platform: peptide-based functional annotation of carbohydrate active enzymes. Nucleic Acids Res. 48, W110–W115 (2020).

    Google Scholar 

  47. Pócsi, I., Prade, R. A., Penninckx, M. J. & Glutathione Altruistic Metabolite in Fungi. in Advances in Microbial Physiology 49 1–76 (Academic Press, 2004).

  48. Goodell, B. et al. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53, 133–162 (1997).

    Google Scholar 

  49. Hammel, K. E., Kapich, A. N., Jensen, K. A. & Ryan, Z. C. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30, 445–453 (2002).

    Google Scholar 

  50. Arantes, V., Milagres, A. M. F., Filley, T. R. & Goodell, B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J. Ind. Microbiol. Biotechnol. 38, 541–555 (2011).

    Google Scholar 

  51. Mattila, H., Österman-Udd, J., Mali, T. & Lundell, T. Basidiomycota fungi and ROS: genomic perspective on key enzymes involved in generation and mitigation of reactive oxygen species. Front. Fungal Biol. 3, 837605 (2022).

    Google Scholar 

  52. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    Google Scholar 

  53. Thurston, C. F. The structure and function of fungal laccases. Microbiology 140, 19–26 (1994).

    Google Scholar 

  54. Glumoff, T. et al. Lignin peroxidase from Phanerochaete-chrysosporium. Eur. J. Biochem. 187, 515–520 (1990).

    Google Scholar 

  55. Jensen, K. A., Houtman, C. J., Ryan, Z. C. & Hammel, K. E. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 67, 2705–2711 (2001).

    Google Scholar 

  56. Arantes, V. & Goodell, B. Current Understanding of Brown-Rot fungal biodegradation mechanisms: A review in Deterioration and Protection of Sustainable Biomaterials, (eds Schultz, T. P., Goodell, B. & Nicholas, D. D.) (American Chemical Society, 3–21. (2014).

  57. Krueger, M. C., Bergmann, M. & Schlosser, D. Widespread ability of fungi to drive Quinone redox cycling for biodegradation. FEMS Microbiol. Lett. 363, fnw105 (2016).

    Google Scholar 

  58. Guillén, F., Martı́nez, M. J., Muñoz, C. & Martı́nez, A. T. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch. Biochem. Biophys. 339, 190–199 (1997).

    Google Scholar 

  59. Prousek, J. Fenton chemistry in biology and medicine. Pure Appl. Chem. 79, 2325–2338 (2007).

    Google Scholar 

  60. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  61. Dancis, A., Roman, D. G., Anderson, G. J., Hinnebusch, A. G. & Klausner, R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. U S A. 89, 3869–3873 (1992).

    Google Scholar 

  62. Goodell, B., Qian, Y. & Jellison, J. Fungal decay of wood: soft rot—Brown rot—White rot in Development of Commercial Wood Preservatives, (eds Schultz, T. P., Militz, H., Freeman, M. H., Goodell, B. & Nicholas, D. D.) (American Chemical Society, 9–31. (2008).

  63. Philpott, C. C. Iron uptake in fungi: A system for every source. Biochim. Biophys. Acta BBA – Mol. Cell. Res. 1763, 636–645 (2006).

    Google Scholar 

  64. Zhang, J., Silverstein, K. A. T., Castaño, J. D., Figueroa, M. & Schilling, J. S. Gene regulation shifts shed light on fungal adaption in plant biomass decomposers. mBio 10, e02176–e02119 (2019).

    Google Scholar 

  65. Castaño, J. D., Khoury, E., Goering, I. V., Evans, J., Zhang, J. & J. E. & Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl. Environ. Microbiol. 90, e00122–e00124 (2024).

    Google Scholar 

  66. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    Google Scholar 

  67. Liu, J. et al. An extracellular Zn-only superoxide dismutase from Puccinia striiformis confers enhanced resistance to host-derived oxidative stress. Environ. Microbiol. 18, 4118–4135 (2016).

    Google Scholar 

  68. Jiang, Y. et al. MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation. Comput. Struct. Biotechnol. J. 19, 4825–4839 (2021).

    Google Scholar 

  69. Sützl, L., Foley, G., Gillam, E. M. J., Bodén, M. & Haltrich, D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol. Biofuels. 12, 118 (2019).

    Google Scholar 

  70. Kersten, P. & Cullen, D. Copper radical oxidases and related extracellular oxidoreductases of wood-decay agaricomycetes. Fungal Genet. Biol. 72, 124–130 (2014).

    Google Scholar 

  71. Escutia, M. R. et al. Cloning and sequencing of two Ceriporiopsis subvermispora Bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases. Appl. Environ. Microbiol. 71, 3608–3616 (2005).

    Google Scholar 

  72. Presley, G. N., Zhang, J. & Schilling, J. S. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Fungal Genet. Biol. 112, 64–70 (2018).

    Google Scholar 

  73. Yaropolov, A. I., Skorobogat’ko, O. V., Vartanov, S. S., Varfolomeyev, S. D. & Laccase Appl. Biochem. Biotechnol. 49, 257–280 (1994).

    Google Scholar 

  74. Ong, E., Pollock, W. B. R. & Smith, M. Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene 196, 113–119 (1997).

    Google Scholar 

  75. Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels. 6, 41 (2013).

    Google Scholar 

  76. Kersten, P. & Cullen, D. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete Chrysosporium. Fungal Genet. Biol. 44, 77–87 (2007).

    Google Scholar 

  77. Jönsson, L., Sjöström, K., Häggström, I. & Nyman, P. O. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim. Biophys. Acta BBA – Protein Struct. Mol. Enzymol. 1251, 210–215 (1995).

    Google Scholar 

  78. Larrondo, L. F., Canessa, P., Melo, F., Polanco, R. & Vicuña, R. Cloning and characterization of the genes encoding the high-affinity iron-uptake protein complex Fet3/Ftr1 in the basidiomycete Phanerochaete Chrysosporium. Microbiology 153, 1772–1780 (2007).

    Google Scholar 

  79. Kües, U. & Rühl, M. Multiple Multi-Copper oxidase gene families in Basidiomycetes – What for? Curr. Genomics. 12, 72–94 (2011).

    Google Scholar 

  80. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: functional Annotation, orthology Assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  81. Akileswaran, L., Brock, B. J., Cereghino, J. L. & Gold, M. H. 1,4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl. Environ. Microbiol. 65, 415–421 (1999).

    Google Scholar 

  82. Brock, B. J., Rieble, S. & Gold, M. H. Purification and characterization of a 1,4-Benzoquinone reductase from the basidiomycete Phanerochaete Chrysosporium. Appl. Environ. Microbiol. 61, 3076–3081 (1995).

    Google Scholar 

  83. Brock, B. J. & Gold, M. H. 1,4-Benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis. Arch. Biochem. Biophys. 331, 31–40 (1996).

    Google Scholar 

  84. Jensen, K. A., Ryan, Z. C., Wymelenberg, V., Cullen, A., Hammel, K. E. & D. & An nadh:quinone oxidoreductase active during biodegradation by the Brown-Rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 68, 2699–2703 (2002).

    Google Scholar 

  85. Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51, D384–D388 (2023).

    Google Scholar 

  86. Kawai, S., Umezawa, T. & Higuchi, T. -Benzoquinone monoketals, novel degradation products of β-O-4 lignin model compounds by Coriolus versicolor and lignin peroxidase of Phanerochaete Chrysosporium. FEBS Lett. 210, 61–65 (1987).

    Google Scholar 

  87. Adnan, M. et al. Carbon catabolite repression in filamentous fungi. Int. J. Mol. Sci. 19, 48 (2017).

    Google Scholar 

  88. Martínez, M. J., Ruiz-Dueñas, F. J., Guillén, F. & Martínez, Á. T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237, 424–432 (1996).

    Google Scholar 

  89. Martorell, M. M., Pajot, H. F. & Figueroa, L. I. C. D. Biological degradation of reactive black 5 dye by yeast Trichosporon Akiyoshidainum. J. Environ. Chem. Eng. 5, 5987–5993 (2017).

    Google Scholar 

  90. Kobayashi, Y. et al. Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny. BMC Genom. 24, 609 (2023).

    Google Scholar 

  91. Close, D. & Ojumu, J. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509. Genome Announc. 4, e01235–e01216 (2016).

    Google Scholar 

  92. Grigoriev, I. V. et al. The genome portal of the department of energy joint genome Institute. Nucleic Acids Res. 40, D26–D32 (2012).

    Google Scholar 

  93. Twala, P. P., Mitema, A., Baburam, C. & Feto, N. A. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiol. 6, 330–349 (2020).

    Google Scholar 

  94. Paszczynski, A., Crawford, R., Funk, D. & Goodell, B. De Novo synthesis of 4,5-Dimethoxycatechol and 2,5-Dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl. Environ. Microbiol. 65, 674–679 (1999).

    Google Scholar 

  95. Chiang, Y. M., Lin, T. S. & Wang, C. C. C. Total heterologous biosynthesis of fungal natural products in Aspergillus Nidulans. J. Nat. Prod. 85, 2484–2518 (2022).

    Google Scholar 

  96. Sha, Y. et al. Adaptive laboratory evolution boosts Yarrowia lipolytica tolerance to vanillic acid. J. Biotechnol. 367, 42–52 (2023).

    Google Scholar 

  97. Barnhart-Dailey, M. C. et al. Internalization and accumulation of model lignin breakdown products in bacteria and fungi. Biotechnol. Biofuels. 12, 175 (2019).

    Google Scholar 

  98. Shimizu, M., Kobayashi, Y., Tanaka, H. & Wariishi, H. Transportation mechanism for Vanillin uptake through fungal plasma membrane. Appl. Microbiol. Biotechnol. 68, 673–679 (2005).

    Google Scholar 

  99. Saier, M. H. Jr et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res. 49, D461–D467 (2021).

    Google Scholar 

  100. Chen, J. Y., Kuruparan, A., Zamani-Babgohari, M. & Gonzales-Vigil, E. Dynamic changes to the plant cuticle include the production of volatile cuticular wax–derived compounds. Proc. Natl. Acad. Sci. 120, e2307012120 (2023).

  101. Cillingová, A. et al. Eukaryotic transporters for hydroxyderivatives of benzoic acid. Sci. Rep. 7, 8998 (2017).

    Google Scholar 

  102. Nomura, T. et al. Exposure of the yeast Saccharomyces cerevisiae to functionalized polystyrene latex nanoparticles: influence of surface charge on toxicity. Environ. Sci. Technol. 47, 3417–3423 (2013).

    Google Scholar 

  103. Nomura, T., Kuriyama, Y., Toyoda, S. & Konishi, Y. Direct measurements of colloidal behavior of polystyrene nanoparticles into budding yeast cells using atomic force microscopy and confocal microscopy. Colloids Surf. Physicochem Eng. Asp. 555, 653–659 (2018).

    Google Scholar 

  104. Maslanka, R., Kwolek-Mirek, M. & Zadrag-Tecza, R. Autofluorescence of yeast Saccharomyces cerevisiae cells caused by glucose metabolism products and its methodological implications. J. Microbiol. Methods. 146, 55–60 (2018).

    Google Scholar 

  105. Bhatta, H. & Goldys, E. M. Characterization of yeast strains by fluorescence lifetime imaging microscopy. FEMS Yeast Res. 8, 81–87 (2008).

    Google Scholar 

  106. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 18, 100–106 (2021).

    Google Scholar 

  107. Surre, J. et al. Strong increase in the autofluorescence of cells signals struggle for survival. Sci. Rep. 8, 12088 (2018).

    Google Scholar 

  108. Hazan, R., Levine, A. & Abeliovich, H. Benzoic acid, a weak organic acid food Preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 4449–4457 (2004).

    Google Scholar 

  109. Awashra, M. & Młynarz, P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 5, 2674–2723 (2023).

    Google Scholar 

  110. Ali, S. S. et al. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. Biotechnol. Biofuels Bioprod. 15, 35 (2022).

    Google Scholar 

  111. Ahuatzi-chacón, D. et al. Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates. World J. Microbiol. Biotechnol. 20, 695–702 (2004).

    Google Scholar 

  112. Durham, D. R., McNamee, C. G. & Stewart, D. B. Dissimilation of aromatic compounds in Rhodotorula graminis: biochemical characterization of pleiotropically negative mutants. J. Bacteriol. 160, 771–777 (1984).

    Google Scholar 

  113. Anderson, E. M. et al. Reductive catalytic fractionation of corn Stover lignin. ACS Sustain. Chem. Eng. 4, 6940–6950 (2016).

    Google Scholar 

  114. Broos, W. et al. Rhodotorula Kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil. Process. Biochem. 137, 229–238 (2024).

    Google Scholar 

  115. Yaguchi, A. et al. Identification of oleaginous yeasts that metabolize aromatic compounds. J. Ind. Microbiol. Biotechnol. 47, 801–813 (2020).

    Google Scholar 

  116. Nogué, V. S. et al. Integrated diesel production from lignocellulosic sugars via oleaginous yeast. Green. Chem. 20, 4349–4365 (2018).

    Google Scholar 

  117. Sachan, A., Ghosh, S. & Mitra, A. Biotransformation of p-coumaric acid by Paecilomyces variotii. Lett. Appl. Microbiol. 42, 35–41 (2006).

    Google Scholar 

  118. Sachan, A., Ghosh, S. & Mitra, A. Transforming p-coumaric acid into p-hydroxybenzoic acid by the mycelial culture of a white rot fungus. Afr. J. Microbiol. Res. 4, 267–273 (2009).

    Google Scholar 

  119. Lubbers, R. J. M. et al. Discovery of novel p-Hydroxybenzoate-m-hydroxylase, Protocatechuate 3,4 Ring-Cleavage dioxygenase, and hydroxyquinol 1,2 Ring-Cleavage dioxygenase from the filamentous fungus Aspergillus Niger. ACS Sustain. Chem. Eng. 7, 19081–19089 (2019).

    Google Scholar 

  120. Lubbers, R. J. M. et al. Evolutionary adaptation of Aspergillus Niger for increased ferulic acid tolerance. J. Appl. Microbiol. 128, 735–746 (2020).

    Google Scholar 

  121. Lubbers, R. J. M., Dilokpimol, A., Visser, J. & de Vries, R. P. Aspergillus Niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl. Microbiol. Biotechnol. 105, 4199–4211 (2021).

    Google Scholar 

  122. Gallage, N. J. & Møller, B. L. Vanillin–Bioconversion and bioengineering of the most popular plant flavor and its De Novo biosynthesis in the vanilla Orchid. Mol. Plant. 8, 40–57 (2015).

    Google Scholar 

  123. Fleige, C., Hansen, G., Kroll, J. & Steinbüchel, A. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin dehydrogenase and its impact on the biotechnical production of Vanillin. Appl. Environ. Microbiol. 79, 81–90 (2013).

    Google Scholar 

  124. Achterholt, S., Priefert, H. & Steinbüchel, A. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to Vanillin. Appl. Microbiol. Biotechnol. 54, 799–807 (2000).

    Google Scholar 

  125. Mitra, A. et al. 4-Hydroxycinnamoyl-CoA Hydratase/lyase (HCHL)—An enzyme of phenylpropanoid chain cleavage from Pseudomonas. Arch. Biochem. Biophys. 365, 10–16 (1999).

    Google Scholar 

  126. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A. & Eisenhaber, F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J. Mol. Biol. 328, 581–592 (2003).

    Google Scholar 

  127. Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein Language models. Nucleic Acids Res. 50, W228–W234 (2022).

    Google Scholar 

  128. Neujahr, H. Y. & Gaal, A. Phenol hydroxylase from yeast: sulfhydryl groups in phenol hydroxylase from Trichosporon cutaneum. Eur. J. Biochem. 58, 351–357 (1975).

    Google Scholar 

  129. Kalin, M., Neujahr, H. Y., Weissmahr, R. N., Sejlitz, T. & Reiser, J. Phenol hydroxylase from Trichosporon cutaneum: gene Cloning, sequence Analysis, and functional expression in Eschenichia coli. J. Bacteriol. 174, 7112–7120 (1992).

  130. Nordberg, H. et al. The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    Google Scholar 

  131. Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Arch. Biochem. Biophys. 702, 108820 (2021).

    Google Scholar 

  132. del Cerro, C. et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl. Acad. Sci. 118, e2017381118 (2021).

  133. Holesova, Z. et al. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology 157, 2152–2163 (2011).

    Google Scholar 

  134. Degradation of Homocyclic Aromatic Compounds by Fungi in. in Encyclopedia of Mycology. 477–488 (eds Zaragoza, Ó. & Casadevall, A.) (Elsevier, 2021).

  135. Semana, P. & Powlowski, J. Four aromatic intradiol ring cleavage dioxygenases from Aspergillus Niger. Appl. Environ. Microbiol. 85, e01786–e01719 (2019).

    Google Scholar 

  136. Lubbers, R. J. M. et al. Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus Niger cell factories. Microb. Cell. Factories. 20, 151 (2021).

    Google Scholar 

  137. Cillingová, A. et al. Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLOS Genet. 18, e1009815 (2022).

    Google Scholar 

  138. Skrzypek, M. S. et al. The Candida genome database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596 (2017).

    Google Scholar 

  139. Mazur, P. et al. Cis,cis-Muconate lactonizing enzyme from Trichosporon cutaneum: evidence for a novel class of cycloisomerases in eucaryotes. Biochemistry 33, 1961–1970 (1994).

    Google Scholar 

  140. Martins, T. M. et al. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus Nidulans. Fungal Genet. Biol. 74, 32–44 (2015).

    Google Scholar 

  141. Hibi, M., Sonoki, T. & Mori, H. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol. Lett. 253, 237–242 (2005).

    Google Scholar 

  142. Veličković, M. et al. Mapping microhabitats of lignocellulose decomposition by a microbial consortium. Nat. Chem. Biol. 20, 1033–1043 (2024).

    Google Scholar 

  143. Perna, V. et al. Laccase-Catalyzed oxidation of lignin induces production of H2O2. ACS Sustain. Chem. Eng. 8, 831–841 (2020).

    Google Scholar 

  144. Li, X., Gluth, A., Zhang, T. & Qian, W. J. Thiol redox proteomics: characterization of thiol-based post-translational modifications. PROTEOMICS 23, 2200194 (2023).

    Google Scholar 

  145. Li, X., Gluth, A., Feng, S., Qian, W. J. & Yang, B. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci. Biotechnol. Biofuels Bioprod. 16, 180 (2023).

    Google Scholar 

  146. Kourist, R. et al. Genomics and transcriptomics analyses of the Oil-Accumulating basidiomycete yeast trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. mBio 6, e00918–e00915 (2015).

    Google Scholar 

  147. Zhu, X. & Williamson, P. R. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5, 1–10 (2004).

    Google Scholar 

  148. Chen, X. et al. The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process. Biotechnol. Biofuels. 5, 8 (2012).

    Google Scholar 

  149. Chen, X. et al. A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. Biotechnol. Biofuels. 7, 98 (2014).

    Google Scholar 

  150. Sluiter, A. et al. Determination of Structural Carbohydrates and Lignin in Biomass National Renewable Energy Laboratory, Bolder, CO. NREL/TP-510-42618. (2012).

  151. Li, X., Li, M., Pu, Y., Ragauskas, A. J. & Zheng, Y. Simultaneous depolymerization and fermentation of lignin into value-added products by the marine protist, Thraustochytrium striatum. Algal Res. 46, 101773 (2020).

    Google Scholar 

  152. Li, X. et al. Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew. Energy. 123, 664–674 (2018).

    Google Scholar 

  153. Gluth, A. et al. Nitrogen limitation causes a seismic shift in redox state and phosphorylation of proteins implicated in carbon flux and lipidome remodeling in Rhodotorula toruloides. Biotechnol. Biofuels Bioprod. 18, 80 (2025).

    Google Scholar 

  154. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample Preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    Google Scholar 

  155. Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Google Scholar 

  156. Cox, J. et al. Accurate Proteome-wide Label-free quantification by delayed normalization and maximal peptide ratio Extraction, termed MaxLFQ. Mol. Cell. Proteom. MCP. 13, 2513–2526 (2014).

    Google Scholar 

  157. Zhu, Y. et al. DEqMS: A method for accurate variance Estimation in differential protein expression Analysis *. Mol. Cell. Proteom. 19, 1047–1057 (2020).

    Google Scholar 

  158. Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    Google Scholar 

  159. Huber, W. et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods. 12, 115–121 (2015).

    Google Scholar 

  160. Smeekens, J. M., Xiao, H. & Wu, R. Global analysis of secreted proteins and glycoproteins in Saccharomyces cerevisiae. J. Proteome Res. 16, 1039–1049 (2017).

    Google Scholar 

  161. Müller, T. et al. Automated sample Preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).

    Google Scholar 

  162. Sielaff, M. et al. Evaluation of FASP, SP3, and iST protocols for proteomic sample Preparation in the low microgram range. J. Proteome Res. 16, 4060–4072 (2017).

    Google Scholar 

  163. Moggridge, S., Sorensen, P. H., Morin, G. B. & Hughes, C. S. Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J. Proteome Res. 17, 1730–1740 (2018).

    Google Scholar 

  164. Lampaki, D., Diepold, A., Glatter, T. A. & Serial Sample Processing strategy with improved performance for in-Depth quantitative analysis of type III secretion events in Pseudomonas aeruginosa. J. Proteome Res. 19, 543–553 (2020).

    Google Scholar 

  165. Knecht, S., Eberl, H. C. & Bantscheff, M. Interval-Based secretomics unravels Acute-Phase response in hepatocyte model systems. Mol. Cell. Proteom. 21, 100241 (2022).

    Google Scholar 

  166. HaileMariam, M. et al. S-Trap, an ultrafast Sample-Preparation approach for shotgun proteomics. J. Proteome Res. 17, 2917–2924 (2018).

    Google Scholar 

  167. Laskar, D. D., Tucker, M. P., Chen, X., Helms, G. L. & Yang, B. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green. Chem. 16, 897–910 (2014).

    Google Scholar 

  168. Nakamura, H. & Watano, S. Direct permeation of nanoparticles across cell membrane: A review. KONA Powder Part. J. 35, 49–65 (2018).

    Google Scholar 

  169. Lipke, P. N. & Ovalle, R. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180, 3735–3740 (1998).

    Google Scholar 

  170. Lu, X., Zheng, X., Li, X. & Zhao, J. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn Stover pretreated with liquid hot water. Biotechnol. Biofuels. 9, 118 (2016).

    Google Scholar 

  171. Ashengroph, M. & Amini, J. Bioconversion of isoeugenol to Vanillin and vanillic acid using the resting cells of Trichosporon Asahii. 3 Biotech. 7, 358 (2017).

    Google Scholar 

  172. Casey, J. & Dobb, R. Microbial routes to aromatic aldehydes. Enzyme Microb. Technol. 14, 739–747 (1992).

    Google Scholar 

  173. Jia, S. R., Cui, J. D., Li, Y. & Sun, A. Y. Production of L-phenylalanine from trans-cinnamic acids by high-level expression of phenylalanine ammonia lyase gene from Rhodosporidium toruloides in Escherichia coli. Biochem. Eng. J. 42, 193–197 (2008).

    Google Scholar 

  174. Adeboye, P. T., Bettiga, M. & Olsson, L. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci. Rep. 7, 42635 (2017).

    Google Scholar 

  175. Konzock, O., Zaghen, S. & Norbeck, J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates. BMC Microbiol. 21, 77 (2021).

    Google Scholar 

  176. Iwasaki, Y. et al. Novel metabolic pathway for salicylate biodegradation via phenol in yeast trichosporon moniliiforme. Biodegradation 21, 557–564 (2010).

    Google Scholar 

  177. Bartsch, S. & Bornscheuer, U. T. Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Eng. Des. Sel. 23, 929–933 (2010).

    Google Scholar 

  178. Konzock, O., Tous-Mohedano, M., Cibin, I., Chen, Y. & Norbeck, J. Cinnamic acid and p-coumaric acid are metabolized to 4-hydroxybenzoic acid by Yarrowia lipolytica. AMB Express. 13, 84 (2023).

    Google Scholar 

  179. Lubbers, R. J. M. et al. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol. Adv. 37, 107396 (2019).

    Google Scholar 

  180. Mikkilä, J. et al. Fungal treatment modifies kraft lignin for lignin- and Cellulose-Based carbon fiber precursors. ACS Omega. 5, 6130–6140 (2020).

    Google Scholar 

  181. Ravi, K., García-Hidalgo, J., Gorwa-Grauslund, M. F. & Lidén, G. Conversion of lignin model compounds by Pseudomonas Putida KT2440 and isolates from compost. Appl. Microbiol. Biotechnol. 101, 5059–5070 (2017).

    Google Scholar 

  182. Falconnier, B. et al. Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. J. Biotechnol. 37, 123–132 (1994).

    Google Scholar 

  183. Guiraud, P., Steiman, R., Seigle-Murandi, F. & Benoit-Guyod, J. L. Metabolism of vanillic acid by micromycetes. World J. Microbiol. Biotechnol. 8, 270–275 (1992).

    Google Scholar 

  184. Ander, P., Hatakka, A. & Eriksson, K. E. Vanillic acid metabolism by the White-Rot fungus Sporotriehum pulverulentum. Arch. Microbiol. 125, 189–202 (1980).

    Google Scholar 

  185. Lubbers, R. J. M. et al. Discovery and functional analysis of a Salicylic acid hydroxylase from Aspergillus Niger. Appl. Environ. Microbiol. 87, e02701–e02720 (2021).

    Google Scholar 

  186. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Google Scholar 

  187. Yang, R. Y. et al. Genome sequence of the Trichosporon Asahii environmental strain CBS 8904. Eukaryot. Cell. 11, 1586–1587 (2012).

    Google Scholar 

  188. Nordlund, I. & Shingler, V. Nucleotide sequences of the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase and 2-hydroxymuconic semialdehyde hydrolase from Pseudomonas CF600. Biochim. Biophys. Acta BBA – Gene Struct. Expr. 1049, 227–230 (1990).

    Google Scholar 

  189. Inoue, J., Shaw, J. P., Rekik, M. & Harayama, S. Overlapping substrate specificities of benzaldehyde dehydrogenase (the XylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the XylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas Putida. J. Bacteriol. 177, 1196–1201 (1995).

    Google Scholar 

  190. Kato, H. et al. Identification and characterization of methoxy- and dimethoxyhydroquinone 1,2-dioxygenase from Phanerochaete Chrysosporium. Appl. Environ. Microbiol. 90, e01753–e01723 (2024).

    Google Scholar 

  191. O’Fallon, J. V., Busboom, J. R., Nelson, M. L. & Gaskins, C. T. A direct method for fatty acid Methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 85, 1511–1521 (2007).

    Google Scholar 

  192. Xie, S., Sun, S. & Dai, S. Y. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res. 2, 28–33 (2013).

    Google Scholar 

  193. Li, X. et al. Discovery of potential pathways for biological conversion of Poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol. Biofuels. 12, 60 (2019).

    Google Scholar 

  194. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 9, 671–675 (2012).

    Google Scholar 

  195. Gluth, A. et al. Integrative Multi-PTM proteomics reveals dynamic Global, Redox, Phosphorylation, and acetylation regulation in Cytokine-Treated pancreatic beta cells. Mol. Cell. Proteom. 23, 100881 (2024).

    Google Scholar 

  196. Xu, Z. et al. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas Putida KT2440 via secretomic analysis. Biotechnol. Biofuels Bioprod. 15, 117 (2022).

    Google Scholar 

  197. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

  198. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Google Scholar 

  199. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  200. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, 100141 (2021).

  201. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-, 2016).

Download references