Mustard derived compounds as insecticides and modulators of human metabolism

mustard-derived-compounds-as-insecticides-and-modulators-of-human-metabolism
Mustard derived compounds as insecticides and modulators of human metabolism

References

  1. Lietzow, J. Biologically active compounds in mustard seeds: a toxicological perspective. Foods. 10(9), 2089 (2021).

  2. Nguyen, V. P. T., Stewart, J., Lopez, M., Ioannou, I. & Allais, F. Glucosinolates: natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and biological activities. Molecules 25 (19), 4537 (2020).

    Google Scholar 

  3. Barba, F. J. et al. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front. Nutr. 3, 24 (2016).

    Google Scholar 

  4. Du, Y., Grodowitz, M. J. & Chen, J. Insecticidal and Enzyme Inhibitory Activities of Isothiocyanates against Red Imported Fire Ants, Solenopsis invicta. Biomolecules, 10(5), 716 (2020).

  5. Cerda, R. et al. Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee. PLoS One. 12 (1), e0169133 (2017).

    Google Scholar 

  6. Cates, R. G. Host plant predictability and the feeding patterns of oligophagous and insect herbivores. Oecologia 48 (3), 319–326 (1981).

    Google Scholar 

  7. Hardy, N. B. & Otto, S. P. Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and Oscillation hypotheses. Proc. Royal Soc. B: Biol. Sci. 281 (1795), 20132960 (2014).

    Google Scholar 

  8. Shukla, G. S. & Singh, J. P. Studies on the rate of excretion of Aulacophora foviecollis Lucas., the red pumpkin beetle (Coleoptera: Chrysomelidae). Experientia, 26(3), 272 (1970).

  9. Rolnik, A. & Olas, B. Vegetables from the cucurbitaceae family and their products: positive effect on human health. Nutrition 78, 110788 (2020).

    Google Scholar 

  10. Khan, M. M. H., Alam, M. Z., Rahman, M. M., Miah, M. I. H. & Hossain, M. M. Influence of weather factors on the incidence and distribution of pumpkin beetle infesting cucurbits. Bangladesh J. Agricultural Res. 37 (2), 361–367 (2012).

    Google Scholar 

  11. Vengateswari, G., Arunthirumeni, M. & Shivakumar, M. S. Effect of food plants on Spodoptera Litura (Lepidoptera: Noctuidae) larvae immune and antioxidant properties in response to Bacillus Thuringiensis infection. Toxicol. Rep. 7, 1428–1437 (2020).

    Google Scholar 

  12. Shekhawat, S. S., ShafiqAnsari, M. & Basri, M. Effect of host plants on life table parameters of Spodoptera Litura. Indian J. Pure Appl. Biosci. 6 (1), 324–332 (2018).

    Google Scholar 

  13. Garg, S., Nain, P., Joshi, R., Punetha, H. & Srivastava, R. M. Bio-efficacy of mustard seed extracts against Bihar hairy caterpillar Spilosoma obliqua (Erebidae: Lepidoptera) & assessment of mustard allelo-chemicals in response to mustard aphid Lipaphis erysimi (Aphididae: Hemiptera) infestation. South. Afr. J. Bot. 171, 156–163 (2024).

    Google Scholar 

  14. Mukhopadhyay, S. & Bhattacharyya, D. K. Colorimetric Estimation of allyl isothiocyanate content in mustard and rapeseed oils. Fette Seifen Anstrichm. 85 (8), 309–311 (1983).

    Google Scholar 

  15. Garg, S., Pant, U., Nain, P. & Punetha, H. Nutritional & Anti-Nutritional and Anti-Oxidative profiling of globally utilized diverse seed coat color mustards. Bioscience Forum – Int. J. 15 (4), 1261–1267 (2023).

    Google Scholar 

  16. Garg, S., Punetha, H., Chaudhary, D. & Srivastava, R. M. Comparative bio efficacy of allyl isothiocyanate and brown mustard oil against polyphagous insect pests Aulacophora foveicollis (Coleoptera: Chrysomelidae) and Spodoptera Litura (Lepidoptera: Noctuidae). International J. Trop. Insect Science (2025).

  17. Das, G. et al. Glucosinolates and Omega-3 fatty acids from mustard seeds: phytochemistry and Pharmacology. Plants (Basel). 11 (17), 2290 (2022).

    Google Scholar 

  18. Cerón, D. A. C., de Alencar, E. R., Faroni, L. R. D., Silva, M. V. A. & Salvador, D. V. Toxicity of allyl isothiocyanate applied in systems with or without recirculation for controlling Sitophilus zeamais, Rhyzopertha dominica, and Tribolium castaneum in corn grains. J. Sci. Food. Agric. 103 (13), 6373–6382 (2023).

    Google Scholar 

  19. Gou, Y. P. et al. Responses of fungi maggot (Bradysia impatiens Johannsen) to allyl isothiocyanate and high CO2. Front. Physiol. 13, 879401 (2022).

    Google Scholar 

  20. Garg, S., Gairola, K., Punetha, H. & Gangola, S. An exploration of the biochemistry of mustard seed meals: A phytochemical and in Silico perspective. Foods 13 (24), 4130 (2024).

    Google Scholar 

  21. Ntone, E. et al. Napins and cruciferins in rapeseed protein extracts have complementary roles in structuring emulsion-filled gels. Food Hydrocoll. 125, 1–11 (2022).

    Google Scholar 

  22. Isman, B., Koul, O., Lucyzynski, A. & Kaminski, J. Insecticidal and antifeedant bioactivities of Neem oils and their relationship to Azadirachtin content. J. Agric. Food Chem. 38 (6), 1407–1411 (1997).

    Google Scholar 

  23. Duraipandiyan, V., Ignacimuthu, S. & Gabriel Paulraj, M. Antifeedant and larvicidal activities of Rhein isolated from the flowers of Cassia fistula L. Saudi J. Biol. Sci. 18 (2), 129–133 (2011).

    Google Scholar 

  24. Mawlong, I., Kumar, M. S. S., Gurung, B., Singh, K. H. & Singh, D. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int. J. Food Prop. 20 (S3), 3274–3281 (2017).

    Google Scholar 

  25. Tsao, R., Peterson, C. J. & Coats, J. R. Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol. 2 (1), 1–7 (2002).

    Google Scholar 

  26. Garg, V. K. et al. K. MFPPI-multi FASTA ProtParam interface. Bioinformation 12 (2), 74–77 (2016).

    Google Scholar 

  27. Yoshikawa, N., Hutchison, G. R. & Fast Efficient fragment-based coordinate generation for open babel. J. Cheminform. 11 (1), 1–9 (2019).

    Google Scholar 

  28. Guterres, H. et al. CHARMM-GUI high‐throughput simulator for efficient evaluation of protein-ligand interactions with different force fields. Protein Sci. 31 (11), e4413 (2022).

    Google Scholar 

  29. Chatterjee, A., Roy, U. K. & Halder, D. Protein active site structure prediction strategy and algorithm. Int. J. Curr. Eng. Technol. 7 (3), 1092–1096 (2017).

    Google Scholar 

  30. Li, H. et al. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds Baicalein and cubebin for the Inhibition of the main protease of SARS-CoV-2. J. Mol. Liq. 374, 121253 (2023).

    Google Scholar 

  31. Rahman, M. et al. In silico, molecular Docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Front. Pharmacol. 11, 1340 (2020).

    Google Scholar 

  32. Yan, Y., Tao, H., He, J. & Huang, S. Y. The HDOCK server for integrated protein-protein Docking. Nat. Protoc. 15 (6), 1829–1852 (2020).

    Google Scholar 

  33. Souto, A. L. et al. Plant-Derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 26 (16), 4835 (2021).

    Google Scholar 

  34. Singh, S., Diksha, E. & Mahajan, E. Appraisal of growth inhibitory, biochemical and genotoxic effects of allyl isothiocyanate on different developmental stages of Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci. Rep. 12 (1), 10363 (2022).

    Google Scholar 

  35. Wu, H., Liu, X., Yu, D., Zhang, X. & Feng, J. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus Zeamais. Pestic. Biochem. Physiol. 109, 12–17 (2014).

    Google Scholar 

  36. Worfel, R. C., Schneider, K. S. & Yang, T. C. Suppressive effect of allyl isothiocyanate on populations of stored grain insect pests. J. Food Process. Preserv. 21 (1), 9–19 (1997).

    Google Scholar 

  37. Santos, J. C., Faroni, L. R. A., Sousa, A. H. & Guedes, R. N. C. Fumigant toxicity of allyl isothiocyanate to populations of the red flour beetle Tribolium castaneum. J. Stored Prod. Res. 47 (4), 238–243 (2011).

    Google Scholar 

  38. Shi, C. H. et al. Control of bradysia Odoriphaga (Diptera: Sciaridae) with allyl isothiocyanate under field and greenhouse conditions. J. Econ. Entomol. 110 (3), 1127–1132 (2017).

    Google Scholar 

  39. Flor-Weiler, L. B. et al. Bioactivity of brassica seed meals and its compounds as ecofriendly larvicides against mosquitoes. Sci. Rep. 13 (1), 3936 (2023).

    Google Scholar 

  40. Arunthirumeni, M., Vinitha, G. & Shivakumar, M. S. Antifeeding and larvicidal activity of bioactive compounds isolated from entomopathogenic fungi Penicillium sp. for the control of agricultural and medically important insect pest (Spodoptera Litura and Culex quinquefasciatus). Parasitol. Int. 92, 102688 (2023).

    Google Scholar 

  41. Gupta, S., Chaudhary, A., Singh, S., Arora, S. & Sohal, S. K. Broccoli (Brassica Oleracea L. var. italica) cultivars, Palam Samridhi and Palam Vichitra affect the growth of Spodoptera Litura (Fabricius) (Lepidoptera: Noctuidae). Heliyon 7 (8), e07612 (2021).

    Google Scholar 

  42. Gujar, G. T. & Mehrotra, K. N. Biological activity of Neem against the red pumpkin beetle, Aulacophora foveicollis. Phytoparasitica 16 (4), 293–302 (1988).

    Google Scholar 

  43. Chandravadana, M. V. Identification of triterpenoid feeding deterrent of red pumpkin beetles (Aulacophora foveicollis) from Momordica Charantia. J. Chem. Ecol. 13 (7), 1689–1694 (1987).

    Google Scholar 

  44. Jan, Q. et al. Comparative conventional preventive strategies for insect pest of Okra. Saudi J. Biol. Sci. 29 (5), 3114–3121 (2022).

    Google Scholar 

  45. Pae, J. L., Faroni, L. R. D. A., Dhingra, O. D., Cecon, P. R. & Silva, T. A. Insecticidal fumigant action of mustard essential oil against Sitophilus Zeamais in maize grains. Crop Prot. 34, 56–58 (2012).

    Google Scholar 

  46. Konecka, E. et al. Insecticidal activity of Brassica alba mustard oil against lepidopteran pests Cydia pomonella (Lepidoptera: Tortricidae), Dendrolimus pini (Lepidoptera: Lasiocampidae), and Spodoptera exigua (Lepidoptera: Noctuidae). J. Plant Prot. Res. 58(2), 206–209 (2018).

  47. Gupta, G., Kaur, G., Yadav, R. & Kumar, N. R. Repellent effects of aqueous extracts of mustard seeds Brassica juncea, on three major pests of horticultural crops. CJAAS 1 (1), 16–24 (2021).

    Google Scholar 

  48. House, H. L. & Graham, A. R. Capric acid blended into food stuff for control of an insect pest, Tribolium confusum (Coleoptera:tenebrionidae). Can. Entomol. 99 (9), 994–999 (1967).

    Google Scholar 

  49. Dasari, S., Ganjayi, M. S., Oruganti, L., Balaji, H. & Meriga, B. Glutathione S-transferases detoxify endogenous and exogenous toxic agents-minireview. J. Dairy. Veterinary Anim. Res. 5 (4), 1–3 (2017).

    Google Scholar 

  50. Bauer-Marinovic, M., Taugner, F., Florian, S. & Glatt, H. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and Transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch. Toxicol. 86 (5), 701–711 (2012).

    Google Scholar 

  51. Pedersen, L. C., Yi, M., Pedersen, L. G. & Kaminski, A. M. From steroid and drug metabolism to glycobiology, using sulfotransferase structures to understand and tailor function. Drug Metab. Dispos. 50 (8), 1027–1041 (2022).

    Google Scholar 

  52. Sandamalika, W. G., Priyathilaka, T. T., Lee, S., Yang, H. & Lee, J. Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): with molecular characterization and functional analysis. Fish Shellfish Immunol. 91, 159–171 (2019).

    Google Scholar 

  53. Bhutta, Z. A., Sadiq, K. & Aga, T. Protein digestion and bioavailability. Encyclopedia Hum. Nutr. 4, 116–122 (2013).

    Google Scholar 

  54. Perera, S. P., McIntosh, T. C. & Wanasundara, J. P. Structural properties of cruciferin and napin of Brassica napus (canola) show distinct responses to changes in pH and temperature. Plants, 5(3), 1–24 (2016).

  55. Sarker, A. K., Saha, D., Begum, H., Zaman, A. & Rahman, M. M. Comparison of cake compositions, Pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes. AMB Express. 5 (1), 22–26 (2015).

    Google Scholar 

  56. Haouel Hamdi, S., Hedjal-Chebheb, M., Kellouche, A., Khouja, M. L. & Boudabous, A. Mediouni Ben Jemaa, J. Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Industrial Crops Prod. 74, 551–556 (2015).

    Google Scholar 

Download references