References
-
MacMillan, M. L. et al. A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol. Blood Marrow Transplant. 21(4), 761–767 (2015).
-
Kakihana, K. et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood J. Am. Soc. Hematol. 128(16), 2083–2088 (2016).
-
Eshel, A. et al. Origins of bloodstream infections following fecal microbiota transplantation: a strain-level analysis. Blood Adv. 6(2), 568–573 (2022).
-
Seymour, C. W. et al. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 376(23), 2235–2244 (2017).
-
Ho, Y.-P. & Reddy, P. M. Identification of pathogens by mass spectrometry. Clin. Chem. 56(4), 525–536 (2010).
-
Reller, L. B., Weinstein, M. P. & Petti, C. A. Detection and identification of microorganisms by gene amplification and sequencing. Clin. Infect. Dis. 44(8), 1108–1114 (2007).
-
Poppert, S. et al. Rapid diagnosis of bacterial meningitis by real-time pcr and fluorescence in situ hybridization. J. Clin. Microbiol. 43(7), 3390–3397 (2005).
-
Clarridge, J. E. III. Impact of 16s rrna gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17(4), 840–862 (2004).
-
Yamamoto, S. & Harayama, S. Pcr amplification and direct sequencing of gyrb genes with universal primers and their application to the detection and taxonomic analysis of pseudomonas putida strains. Appl. Environ. Microbiol. 61(3), 1104–1109 (1995).
-
Serapide, F. et al. Impact of multiplex pcr on diagnosis of bacterial and fungal infections and choice of appropriate antimicrobial therapy. Diagnostics 15(8), 1044 (2025).
-
Maurin, M. Real-time pcr as a diagnostic tool for bacterial diseases. Expert Rev. Mol. Diagn. 12(7), 731–754 (2012).
-
Rodriguez-Mateos, P., Azevedo, N. F., Almeida, C. & Pamme, N. Fish and chips: A review of microfluidic platforms for fish analysis. Med. Microbiol. Immunol. 209(3), 373–391 (2020).
-
Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6(5), 339–348 (2008).
-
Huang, X. X., Urosevic, N. & Inglis, T. J. Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (afc) following peptide nucleic acid fluorescence in situ hybridization (pna-fish). PLoS ONE 14(2), 0201332 (2019).
-
Almeida, C., Azevedo, N. F., Santos, S., Keevil, C. W. & Vieira, M. J. Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (pna fish). PLoS ONE 6(3), 14786 (2011).
-
Wang, M. et al. Enzyme-assisted nucleic acid amplification in molecular diagnosis: a review. Biosensors 13(2), 160 (2023).
-
Pala, L., Sirec, T. & Spitz, U. Modified enzyme substrates for the detection of bacteria: A review. Molecules 25(16), 3690 (2020).
-
Shelef, O. et al. Enzymatic activity profiling using an ultrasensitive array of chemiluminescent probes for bacterial classification and characterization. J. Am. Chem. Soc. 146(8), 5263–5273 (2024).
-
Moeckel, C. et al. A survey of k-mer methods and applications in bioinformatics. Comput. Struct. Biotechnol. J. 23, 2289–2303 (2024).
-
Simon, H. Y., Siddle, K. J., Park, D. J. & Sabeti, P. C. Benchmarking metagenomics tools for taxonomic classification. Cell 178(4), 779–794 (2019).
-
Tran, Q. & Phan, V. Assembling reads improves taxonomic classification of species. Genes 11(8), 946 (2020).
-
Alser, M. et al. Accelerating genome analysis: A primer on an ongoing journey. IEEE Micro 40(5), 65–75 (2020).
-
Wu, L., Sharifi, R., Lenjani, M., Skadron, K. & Venkat, A. Sieve: Scalable in-situ dram-based accelerator designs for massively parallel k-mer matching. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 251–264 (2021). IEEE
-
Pagiamtzis, K. & Sheikholeslami, A. Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid-State Circuits 41(3), 712–727 (2006).
-
Garzón, E., Lanuzza, M., Teman, A. & Yavits, L. AM(^4): MRAM crossbar based CAM/TCAM/ACAM/AP for in-memory computing. IEEE J. Emerg. Select. Top. Circuits Syst. 13(1), 408–421 (2023).
-
Yin, X. et al. FeCAM: A universal compact digital and analog content addressable memory using ferroelectric. IEEE Trans. Electron Devices 67(7), 2785–2792 (2020).
-
Yang, R. et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat. Electron. 2(3), 108–114 (2019).
-
Pagiamtzis, K., Azizi, N. & Najm, F.N. A Soft-Error Tolerant Content-Addressable Memory (CAM) Using An Error-Correcting-Match Scheme. In: IEEE Custom Int. Circ. Conf. 2006, pp. 301–304 (2006).
-
Krishnan, S. C., Panigrahy, R. & Parthasarathy, S. Error-correcting codes for ternary content addressable memories. IEEE Trans. Comput. 58(2), 275–279 (2009).
-
Ni, K. et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron. 2(11), 521–529 (2019).
-
Riazi, M. S., Samragh, M. & Koushanfar, F. Camsure: Secure content-addressable memory for approximate search. ACM Trans. Embedded Comput. Syst. (TECS) 16(5s), 1–20 (2017).
-
Garzón, E. et al. Hamming distance tolerant content-addressable memory (HD-CAM) for DNA classification. IEEE Access 10, 28080–28093 (2022).
-
Bui, T.T. & Shibata, T. A Low-Power Associative Processor with the R-th Nearest-Match Hamming-Distance Search Engine Employing Time-Domain Techniques. In: 2010 Fifth IEEE International Symposium on Electronic Design, Test Applications, pp. 54–57 (2010).
-
Rahimi, A., Ghofrani, A., Cheng, K.-T., Benini, L. & Gupta, R.K. Approximate associative memristive memory for energy-efficient GPUs. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1497–1502 (2015).
-
Imani, M., Rahimi, A., Kong, D., Rosing, T. & Rabaey, J.M. Exploring hyperdimensional associative memory. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 445–456 (2017). IEEE
-
Hanhan, R., Garzón, E., Jahshan, Z., Teman, A., Lanuzza, M. & Yavits, L. EDAM: Edit Distance tolerant Approximate Matching content addressable memory. In: Proc. of the 49th Annual Int. Symp. on Comp. Arch., pp. 495–507 (2022).
-
NCBI: Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information (2021). https://www.ncbi.nlm.nih.gov/
-
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: A next-generation sequencing read simulator. Bioinformatics 28(4), 593–594 (2012).
-
Ono, Y., Asai, K. & Hamada, M. PBSIM2: A simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics 37(5), 589–595 (2021).
-
Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy pacbio correction through iterative short read consensus. Bioinformatics 30(21), 3004–3011 (2014).
-
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20(1), 1–13 (2019).
-
Yavits, L. Drama: Commodity dram based content addressable memory. IEEE Computer Architecture Letters (2023).
-
Firtina, C. et al. RawHash: Enabling fast and accurate real-time analysis of raw nanopore signals for large genomes. Bioinformatics 39, 297–307 (2023).
-
Fujiki, D., Wu, S., Ozog, N., Goliya, K., Blaauw, D., Narayanasamy, S. & Das, R. Seedex: A genome sequencing accelerator for optimal alignments in subminimal space. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 937–950 (2020). IEEE
-
Gu, Y., Subramaniyan, A., Dunn, T., Khadem, A., Chen, K.-Y., Paul, S., Vasimuddin, M., Misra, S., Blaauw, D. & Narayanasamy, S. et al. Gendp: A framework of dynamic programming acceleration for genome sequencing analysis. In: Proc. 50th Annual International Symposium on Computer Architecture, pp. 1–15 (2023).
-
Wu, Y.-C., Chen, Y.-L., Yang, C.-H., Lee, C.-H., Chen, W.-C., Lin, L.-Y., Chang, N.-S., Lin, C.-P., Chen, C.-S., Hung, J.-H. & Yang, C.-H. A 28nm Fully Integrated End-to-End Genome Analysis Accelerator for Next-Generation Sequencing. IEEE Transactions on Biomedical Circuits and Systems, 1–15 (2025).
-
Dunn, T., Sadasivan, H., Wadden, J., Goliya, K., Chen, K.-Y., Blaauw, D., Das, R. & Narayanasamy, S. SquiggleFilter: An Accelerator for Portable Virus Detection. In: MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 535–549 (2021).
-
Bao, Y. et al. Squigglenet: real-time, direct classification of nanopore signals. Genome Biol. 22, 1–16 (2021).
-
Harary, Y. et al. GCOC: A genome classifier-on-chip based on similarity search content addressable memory. IEEE Trans. Biomed. Circuits Syst. 19(3), 484–495 (2025).
