Mannich reaction-based combinatorial libraries identify antioxidant ionizable lipids for mRNA delivery with reduced immunogenicity

mannich-reaction-based-combinatorial-libraries-identify-antioxidant-ionizable-lipids-for-mrna-delivery-with-reduced-immunogenicity
Mannich reaction-based combinatorial libraries identify antioxidant ionizable lipids for mRNA delivery with reduced immunogenicity

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    PubMed  Google Scholar 

  3. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    PubMed  Google Scholar 

  4. Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & van der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).

    CAS  PubMed  Google Scholar 

  5. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS  PubMed  Google Scholar 

  7. Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers 3, 63 (2023).

    CAS  Google Scholar 

  8. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Igyártó, B. Z., Jacobsen, S. & Ndeupen, S. Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr. Opin. Virol. 48, 65–72 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moghimi, S. M. & Simberg, D. Pro-inflammatory concerns with lipid nanoparticles. Mol. Ther. 30, 2109–2110 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Minnaert, A.-K. et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across. Adv. Drug Deliv. Rev. 176, 113900 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegwart, D. J. et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl Acad. Sci. USA 108, 12996–13001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2021).

    PubMed  Google Scholar 

  16. Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tramontini, M. Advances in the chemistry of Mannich bases. Synthesis 1973, 703–775 (1973).

    Google Scholar 

  18. Tramontini, M. & Angiolini, L. Further advances in the chemistry of Mannich bases. Tetrahedron 46, 1791–1837 (1990).

    CAS  Google Scholar 

  19. Tramontini, M., Angiolini, L. & Ghedini, N. Mannich bases in polymer chemistry. Polymer 29, 771–788 (1988).

    CAS  Google Scholar 

  20. Zhang, H. & Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 8, 33–42 (2016).

    Google Scholar 

  21. Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F. & Stefani, M. Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants 10, 1044 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yahfoufi, N., Alsadi, N., Jambi, M. & Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10, 1618 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Grant, C. M. Regulation of translation by hydrogen peroxide. Antioxid. Redox Signal. 15, 191–203 (2011).

    CAS  PubMed  Google Scholar 

  24. Devoldere, J., Dewitte, H., De Smedt, S. C. & Remaut, K. Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov. Today 21, 11–25 (2016).

    CAS  PubMed  Google Scholar 

  25. Linares-Fernández, S., Lacroix, C., Exposito, J.-Y. & Verrier, B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 26, 311–323 (2020).

    PubMed  Google Scholar 

  26. Forster Iii, J., Nandi, D. & Kulkarni, A. mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency. Biomater. Sci. 10, 5566–5582 (2022).

    CAS  PubMed  Google Scholar 

  27. Filomeni, G., De Zio, D. & Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377–388 (2015).

    CAS  PubMed  Google Scholar 

  28. Dasuri, K., Zhang, L. & Keller, J. N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62, 170–185 (2013).

    CAS  PubMed  Google Scholar 

  29. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS  PubMed  Google Scholar 

  31. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS  PubMed  Google Scholar 

  32. Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    CAS  PubMed  Google Scholar 

  33. Flippo, K. H. & Potthoff, M. J. Metabolic messengers: FGF21. Nat. Metab. 3, 309–317 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Geng, L., Lam, K. S. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    CAS  PubMed  Google Scholar 

  35. Jimenez, V. et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol. Med. 10, e8791 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Gong, N. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15, 1053–1064 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Buonaguro, L., Petrizzo, A., Tornesello, M. L. & Buonaguro, F. M. Translating tumor antigens into cancer vaccines. Clin. Vaccine Immunol. 18, 23–34 (2011).

    CAS  PubMed  Google Scholar 

  38. Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sittplangkoon, C. et al. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front. Immunol. 13, 983000 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Berger, A. Th1 and Th2 responses: what are they? Br. Med. J. 321, 424 (2000).

    CAS  Google Scholar 

  44. Kaye, P. M., Curry, A. J. & Blackwell, J. M. Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J. Immunol. 146, 2763–2770 (1991).

    CAS  PubMed  Google Scholar 

  45. Darrah, P. A. et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13, 843–850 (2007).

    CAS  PubMed  Google Scholar 

  46. Precopio, M. L. et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J. Exp. Med. 204, 1405–1416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Giannotta, G. & Giannotta, N. mRNA COVID-19 vaccines and long-lived plasma cells: a complicated relationship. Vaccines 9, 1503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    CAS  PubMed  Google Scholar 

  49. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a US National Science Foundation CAREER Award (CBET-2145491) and the American Cancer Society (number RSG-22-122-01-ET). E.L.H. acknowledges support from a US National Science Foundation Graduate Research Fellowship (DGE 1845298). C.G.F.-E. acknowledges support from a US National Science Foundation Graduate Research Fellowship (DGE 1845298), a GEM Fellowship and the NIH/National Cancer Institute Pre-doc to Post-doc Transition Award (F99 CA284294).

Author information

Author notes

  1. These authors contributed equally: Ningqiang Gong, Dongyoon Kim.

Authors and Affiliations

  1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

    Ningqiang Gong, Dongyoon Kim, Emily L. Han, Rohan Palanki, Qiangqiang Shi, Xuexiang Han, Lulu Xue, Junchao Xu, Christian G. Figueroa-Espada & Michael J. Mitchell

  2. Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China

    Ningqiang Gong, Zilin Meng & Tianyu Luo

  3. Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Mohamad-Gabriel Alameh, Rakan El-Mayta, Garima Dwivedi, Drew Weissman & Michael J. Mitchell

  4. Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA

    Mohamad-Gabriel Alameh, Rakan El-Mayta, Garima Dwivedi, Drew Weissman & Michael J. Mitchell

  5. Department of Chemistry, Tsinghua University, Beijing, China

    Jinghong Li

  6. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Michael J. Mitchell

  7. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Michael J. Mitchell

  8. Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Michael J. Mitchell

  9. Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Michael J. Mitchell

Authors

  1. Ningqiang Gong
  2. Dongyoon Kim
  3. Mohamad-Gabriel Alameh
  4. Rakan El-Mayta
  5. Emily L. Han
  6. Garima Dwivedi
  7. Rohan Palanki
  8. Qiangqiang Shi
  9. Xuexiang Han
  10. Lulu Xue
  11. Junchao Xu
  12. Zilin Meng
  13. Tianyu Luo
  14. Christian G. Figueroa-Espada
  15. Drew Weissman
  16. Jinghong Li
  17. Michael J. Mitchell

Contributions

N.G., D.K. and M.J.M. conceived of and designed the experiments. N.G., D.K., M.-G.A., R.E.-M., G.D., Q.S., X.H., L.X., J.X., R.P., Z.M., T.L. and C.G.F.-E. performed the experiments. N.G., D.K. and R.E.-M. analysed the data. D.W. and J.L. involved in results discussion. N.G., D.K., E.L.H., R.E.-M. and M.J.M. wrote and edited the paper. M.J.M. supervised the entire project. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Michael J. Mitchell.

Ethics declarations

Competing interests

N.G. and M.J.M. have filed a patent application related to this study. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Bruno De Geest, Shuai Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evaluation of LNP-induced innate immunity activation in vivo using complete blood counting assay and ELISA assay.

C-a16, C-a16-Q, DLin-MC3-DMA LNPs or PBS was intravenously injected, and a complete blood counting (CBC) assay was performed 24 hours post-LNP injection. a, The levels of white blood cells (WBC), b, neutrophils (Neu), c, lymphocytes (Lym), and d, monocytes (Mon), in the blood were measured (n = 4). ELISA assay was used to quantify the levels of IL-2 (e) and TNF-α (f) in the mouse serum (n = 4). Statistical differences were calculated using one-way ANOVA with Tukey’s post hoc test.

Source data

Extended Data Fig. 2 C-a16 LNPs induce antigen-specific immune responses.

ad, Quantification of LNP distribution in immune cell populations, including DCs (a), macrophages (b), B cells (c), and T cells (d), assessed by flow cytometry. Data are presented as mean ± SD (n = 5), and statistical differences were determined by one-way ANOVA. e, Immunofluorescence images of lymph nodes in mice after intramuscular injection of DiR dye-labeled LNPs. Nuclei are represented in blue, CD11c+ DCs in green, and DiR-labeled LNPs in red. f, Evaluation of OVA-specific T cell generation following two doses of C-a16-mOVA vaccines. Seven days after the boost dose, blood T cells were stained with SIINFEKL-H2Kb tetramer-APC antibody. After that, SIINFEKL-H2Kb tetramer+ cells were detected by flow cytometry (f) and quantified (g). h and i, Investigation of vaccine-induced immune responses’ ability to eliminate SIINFEKL epitope+ target cells. A mixture of CFSElow SIINFEKL-loaded and CFSEhigh non-loaded splenocytes (in a 1:1 ratio) was intravenously injected into vaccinated mice. After 24 hours, splenocytes were collected and analyzed by flow cytometry (h), and target cell killing was quantified (i). Data in ad, g and i are shown as mean ± SD (n = 5). Statistical differences were calculated using one-way ANOVA with Tukey’s post hoc test.

Source data

Extended Data Fig. 3 Body weight change and survival curves.

a, Body weight change after mice were treated with various LNP vaccines. b, Mice survival curves after treatment with various LNP vaccines encapsulating OVA mRNA. c, Survival curves of mice receiving various LNPs encapsulating Pbk-Actn4 mRNA. Data in a are shown as mean ± SD (n = 8).

Source data

Extended Data Fig. 4 T cell immune responses elicited by C-a16 LNP encapsulating mRNA encoding SARS-CoV-2 spike protein.

Mice received intramuscular immunization with various LNP vaccines on days 0 and 21 (0.25 mg/kg). On day 35, splenocytes were collected and stimulated with SARS-CoV-2 RBD peptide pools. a and b, T cells were assessed for Th2 (IL-4, IL-5) and c, Th17 (IL-17a) intracellular cytokine expression. d, Evaluation of the expression of the cytotoxic marker CD107α expression in CD8+ T cells. Data are shown as mean ± SD (n = 5). Statistical differences were calculated using one-way ANOVA with Tukey’s post hoc test.

Source data

Extended Data Fig. 5 Evaluation of polyfunctional CD4+ and CD8+ T cells.

Mice received intramuscular immunization with various LNP vaccines on days 0 and 21 (0.25 mg/kg). On day 35, splenocytes were collected and stimulated with SARS-CoV-2 RBD peptide pools. CD4+ (ag) and CD8+ (hn) polyfunctional T cell percentages (%) were assessed. Data are shown as mean ± SD (n = 5). Statistical differences were calculated using one-way ANOVA with Tukey’s post hoc test.

Source data

Extended Data Fig. 6 Investigation of humoral immune responses and memory B cells elicited by various LNPs.

a, Mice received intramuscular immunization with various LNP vaccines on days 0 and 21 (0.25 mg/kg). IgG2c to IgG1 ratio was determined. Data are presented as mean ± s.d. b, Enumeration of RBD-specific B cells per spleen. Splenocytes were stimulated with SARS-CoV-2 RBD peptide pools and stained with various antibodies before flow cytometry analysis. c, Percentage of RBD-specific B cells categorized by germinal center (GC) or memory phenotype. GC B cells were defined as CD38GL7+, and memory B cells were defined as CD38+GL7. Data are shown as mean ± SD (n = 5). Statistical differences were calculated using one-way ANOVA with Tukey’s post hoc test.

Source data

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Kim, D., Alameh, MG. et al. Mannich reaction-based combinatorial libraries identify antioxidant ionizable lipids for mRNA delivery with reduced immunogenicity. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01422-8