References
-
Cornman, R. S. et al. Pathogen webs in collapsing honey bee colonies. PLoS One. 7, e43562 (2012).
-
Allsopp, M. H., de Lange, W. J. & Veldtman, R. Valuing insect pollination services with cost of replacement. PloS ONE. 3, e3128 (2008).
-
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).
-
Kremen, C. et al. Pollination and other ecosystem services porduced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).
-
Genersch, E. et al. Reclassification of Paenibacillus Larvae subsp. Pulvifaciens and Paenibacillus Larvae subsp. Larvae as Paenibacillus Larvae without subspecies differentiation. Int. J. Syst. Evol. Microbiol. 56, 501–511 (2006).
-
Genersch, E. & Otten, C. The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp. larvae. Apidologie 34, 195–206 (2003).
-
Morrissey, B. J. et al. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ. Microbiol. 17, 1414–1424 (2015).
-
Beims, H. et al. Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American foulbrood. Int. J. Med. Microbiol. 310, 151394 (2020).
-
Ebeling, J., Knispel, H., Fünfhaus, A. & Genersch, E. The biological role of the enigmatic C3larvinAB toxin of the honey bee pathogenic bacterium Paenibacillus larvae. Environ. Microbiol. 21, 3091–3106 (2019).
-
Djukic, M. et al. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS ONE. 9, e90914 (2014).
-
Fünfhaus, A., Ashiralieva, A., Borriss, R. & Genersch, E. Use of suppression subtractive hybridization to identify genetic differences between differentially virulent genotypes of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Environ. Microbiol. Rep. 1, 240–250 (2009).
-
Ashiralieva, A. & Genersch, E. Reclassification, genotypes, and virulence of Paenibacillus larvae, the etiological agent of American foulbrood in honeybees – a review. Apidologie 37, 411–420 (2006).
-
Genersch, E., Ashiralieva, A. & Fries, I. Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honey bees. Appl. Environ. Microbiol. 71, 7551–7555 (2005).
-
Rauch, S., Ashiralieva, A., Hedtke, K. & Genersch, E. Negative correlation between individual-insect-level virulence and colony-level virulence of Paenibacillus larvae, the etiological agent of American foulbrood of honeybees. Appl. Environ. Microbiol. 75, 3344–3347 (2009).
-
Ebeling, J., Knispel, H., Hertlein, G., Fünfhaus, A. & Genersch, E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 100, 7387–7395 (2016).
-
Poppinga, L. & Genersch, E. Molecular pathogenesis of American foulbrood: how Paenibacillus larvae kills honey bee larvae. Curr. Opin. Insect Sci. 10, 29–36 (2015).
-
Garcia-Gonzalez, E. et al. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American foulbrood of honey bees. PLoS Path. 10, e1004284 (2014).
-
Fünfhaus, A., Poppinga, L. & Genersch, E. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ. Microbiol. 15, 2951–2965 (2013).
-
Poppinga, L. et al. Identification and functional analysis of the S-layer protein Spla of Paenibacillus larvae, the causative agent of American foulbrood of honey bees. PLoS Path. 8, e1002716 (2012).
-
Fünfhaus, A. & Genersch, E. Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein. Environ. Microbiol. Rep. 4, 194–202 (2012).
-
Yue, D., Nordhoff, M., Wieler, L. H., Genersch, E. & Fluorescence situ-hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ. Microbiol. 10, 1612–1620 (2008).
-
Anonymous. in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022: OIE Terrestrial Manual 2022 (ed OIE World Organisation for Animal Health) Ch. 3.2.2. 719–735 (World Organisation for Animal Health, 2022).
-
Fünfhaus, A., Göbel, J., Ebeling, J., Knispel, H. & Genersch, E. Questions, problems, and solutions in the diagnosis of American Foulbrood – a German perspective. Berl Münch Tierärztl Wochenschr. 132, 26–34 (2019).
-
Neuendorf, S., Hedtke, K., Tangen, G. & Genersch, E. Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen. Microbiology 150, 2381–2390 (2004).
-
Ebeling, J. et al. A comparison of different matrices for the laboratory diagnosis of the epizootic American foulbrood of honey bees. Vet. Sci. 10, 103 (2023).
-
Bailey, L. Melissococcus pluton, the cause of European foulbrood of honeybees (Apis ssp). J. Appl. Bacteriol. 55, 65–69 (1983).
-
de Graaf, D. C. et al. Standard methods for American foulbrood research. J. Apicult Res. 52, 1–27 (2013).
-
Aupperle-Lellbach, H., Poppinga, L., Fünfhaus, A. & Genersch, E. European foulbrood in honey bees (Apis mellifera): histological insights into the pathogenesis of larval infections with the low virulent Melissococcus Plutonius strain LMG20360T belonging to the clonal complex 13. Berl Münch Tierärztl Wochenschr. 132, 35–40 (2019).
-
Forsgren, E. European foulbrood in honey bees. J. Invertebr Pathol. 103, S5–S9 (2010).
-
Crailsheim, K. et al. Standard methods for artificial rearing of Apis mellifera larvae. J. Apicult Res. 52, 1–15 (2013).
-
Kilwinski, J., Peters, M., Ashiralieva, A. & Genersch, E. Proposal to reclassify Paenibacillus larvae subsp. Pulvifaciens DSM 3615 (ATCC 49843) as Paenibacillus larvae subsp. larvae. Results of a comparative biochemical and genetic study. Vet. Microbiol. 104, 31–42 (2004).
-
Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).
-
Waldmann, H. & Lefkovits, I. Limiting Dilution analysis of cells of the immune system II: What can be learnt? Immunol. Today. 5, 295–298 (1984).
-
Urusov, A. E., Zherdev, A. V. & Dzantiev, B. B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 9, 89 (2019).
-
Hornitzky, M. A. Z. & Karlovskis, S. A culture technique for the detection of Bacillus larvae in honeybees. J. Apicult Res. 28, 118–120 (1989).
-
Plagemann, O. Eine einfache kulturmethode Zur Bakteriologischen identifizierung von Bacillus larvae Mit Columbia-Blut-Schrägagar. Berl Münch Tierärztl Wschr. 98, 61–62 (1985).
-
Djordjevic, S., Ho-Shon, M. & Hornitzky, M. DNA restriction endonuclease profiles and typing of geographically diverse isolates of Bacillus larvae. J. Apicult Res. 33, 95–103 (1994).
-
De Graaf, D. C. et al. Identification of Paenibacillus larvae to the subspecies level: an obstacle for AFB diagnosis. J. Invertebr Pathol. 91, 115–123 (2006).
-
Schäfer, M. O. et al. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet. Microbiol. 170, 291–297 (2014).
-
Boehringer, H. R. & O´Farrell, B. J. Lateral flow assays in infectious disease diagnosis. Clin. Chem. 68, 52–58 (2022).
-
Ngom, B., Guo, Y., Wang, X. & Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal Chem. 397, 1113–1135 (2010).
-
Posthuma-Trumpie, G. A., Korf, J. & van Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal Chem. 393, 569–582 (2009).
-
Peng, Y. S. & Peng, K. Y. A study on the possible utilization of immunodiffusion and Immunofluorescence techniques as diagnostic methods for American Fouldbrood of honeybees (Apis mellifera). J. Invertebr Pathol. 33, 284–289 (1979).
-
Otte, E. Contribution to the laboratory diagnosis of American foulbrood (A.F.B.) of the honey bee with particular reference to the fluorescent antibody technique. Apidologie 4, 331–339 (1973).
-
Olsen, P. E., Grant, G. A., Nelson, D. L. & Rice, W. A. Detection of American foulbrood diseae of the honey bee, using a monoclonal antibody specific to Bacillus larvae in an enzyme-linked immunosorbent assay. Can. J. Micobiol. 36, 732–735 (1990).
-
Saville, B. G. Differentiation of virulent and biological control Paenibacillus larvae strains associated with American Foulbrood in bee hives. PhD Thesis (2011).
-
Ebeling, J. et al. Characterization of the toxin Plx2A, a RhoA-targeting ADP-ribosyltransferase produced by the honey bee pathogen Paenibacillus larvae. Environ. Microbiol. 19, 5100–5116 (2017).
-
Hertlein, G. et al. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 9, e108272 (2014).
-
Hertlein, G. et al. Biological role of paenilarvins, iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 11, e0164656 (2016).
-
Müller, S., Garcia-Gonzalez, E., Genersch, E. & Süssmuth, R. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat. Prod. Rep. 32, 765–778 (2015).
-
Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr Pathol. 103, S10–S19 (2010).
-
de Miranda, J., Cordoni, G. & Budge, G. The acute bee paralysis virus – Kashmir bee virus – Israeli acute paralysis virus complex. J. Invertebr Pathol. 103, S30–S47 (2010).
-
Han, S. H., Lee, D. B., Lee, D. W., Kim, E. H. & Yoon, B. S. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American foulbrood (AFB). J. Invertebr Pathol. 99, 8–13 (2008).
-
Martinez, J., Simon, V., Gonzalez, B. & Conget, P. A real-time PCR-based strategy for the detection of Paenibacillus larvae vegetative cells and spores to improve the diagnosis and the screening of American foulbrood. Lett. Appl. Microbiol. 50, 603–610 (2010).
-
Mistry, D. A., Wang, J. Y., Moeser, M. E., Starkey, T. & Lee, L. Y. W. A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS–CoV–2. BMC Infect. Dis. 21, 828 (2021).
