Metabolomics aided by machine learning decodes adaptive remodeling of Bacillus biofilms in response to pasteurization stress

metabolomics-aided-by-machine-learning-decodes-adaptive-remodeling-of-bacillus-biofilms-in-response-to-pasteurization-stress
Metabolomics aided by machine learning decodes adaptive remodeling of Bacillus biofilms in response to pasteurization stress

References

  1. Mills, S., Ross, R. P., Hill, C., Fitzgerald, G. F. & Stanton, C. Milk intelligence: mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401 (2011).

    Google Scholar 

  2. Medjahdi, K., Didouh, N. & Araujo, R. Pasteurized milk: a highlight on potential sources of contamination by aerobic spore-forming bacteria. Food Control 171, 111134 (2022).

    Google Scholar 

  3. Liu, Y. et al. Unraveling the ecological interactions between dairy strains Bacillus licheniformis and Bacillus cereus during the dual-species biofilm formation. Food Microbiol 128, 104716 (2025).

    Google Scholar 

  4. Goetz, C., Sanschagrin, L., Jubinville, E., Jacques, M. & Jean, J. Recent progress in antibiofilm strategies in the dairy industry. J. Dairy Sci. https://doi.org/10.3168/jds.2024-25554 (2024).

  5. Yuan, L., Dai, H. C., He, G. Q., Yang, Z. Q. & Jiao, H. A. Invited review: current perspectives for analyzing the dairy biofilms by integrated multiomics. J. Dairy Sci. 106, 8181–8192 (2023).

    Google Scholar 

  6. Yuan, L. et al. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. Sci. Total Environ. 899, 165695 (2023).

    Google Scholar 

  7. Mouftah, S. F. et al. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food. Microbiol. 95, 103706 (2021).

    Google Scholar 

  8. Wang, L. Y. et al. The anti-microbial peptide citrocin controls Pseudomonas aeruginosa biofilms by breaking down extracellular polysaccharide. Int. J. Mol. Sci. 25, 4122 (2024).

    Google Scholar 

  9. Niu, B., Sun, Y. M., Niu, Y. M. & Qiao, S. Ultrasound treatment combined with rhamnolipids for eliminating the biofilm of Bacillus cereus. J. Sep Sci. 12, 2478 (2025).

    Google Scholar 

  10. Qi, Y. et al. Transcriptomic analysis of biofilm formation by Bacillus cereus under different carbon source conditions. Food Qual. Saf 7, 553–565 (2024).

    Google Scholar 

  11. Gangwal, A. W. et al. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. Fems Microbiol. Rev. 47, fuad044 (2023).

    Google Scholar 

  12. Kantiwal, U. & Pandey, J. Efficient inhibition of bacterial biofilm through interference of protein-protein interaction of master regulator proteins: a proof of concept study with SinR- SinI complex of Bacillus subtilis. Appl. Biochem. Biotech. 195, 1947–1967 (2023).

    Google Scholar 

  13. Wang, Y. et al. The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk-a comprehensive review. Int. J. Mol Sci. 25, 8670 (2024).

    Google Scholar 

  14. Liu, S. et al. Effect of microfluidic channel geometry on Bacillus subtilis biofilm formation. Biomed. Microdevices 24, 11 (2022).

    Google Scholar 

  15. Hamida, K. et al. Bacillus cereus adhesion: an investigation of the physicochemical characteristics of surface and effect of bio adhesion on the properties of silicone. J. Adhes. Sci. Technol. 27, 90–101 (2013).

    Google Scholar 

  16. Zhao, Y. L. et al. Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S-suis in vitro. J. Proteomics 116, 1–14 (2015).

    Google Scholar 

  17. Guo, J. et al. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front. Microbiol. 13, 968592 (2022).

    Google Scholar 

  18. Wang, H. K., Fan, Q. Y., Wang, Y. X., Yi, L. & Wang, Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC. Microbiol. 24, 297 (2024).

    Google Scholar 

  19. Sadiq, F. A., Yan, B. W., Zhao, J. X., Zhang, H. & Chen, W. Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. LWT 118, 108772 (2020).

    Google Scholar 

  20. Castro, J. et al. Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. NPJ. Biofilms Microbiol. 3, 3 (2017).

    Google Scholar 

  21. Cao, L. C. et al. Elucidation of the molecular mechanism of bovine milk gamma-glutamyltransferase catalyzed formation of gamma-glutamyl-valyl-glycine. J. Agric. Food Chem. 71, 2455–2463 (2023).

    Google Scholar 

  22. Kang, Y. J., Shen, M., Yang, X. L., Cheng, D. C. & Zhao, Q. X. A plant growth-promoting rhizobacteria (PGPR) mixture does not display synergistic effects, likely by biofilm but not growth inhibition. Microbiology 83, 666–673 (2014).

    Google Scholar 

  23. Liu, J. et al. γ-Polyglutamic acid (γ-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. Int. J. Food Microbiol. 142, 190–197 (2010).

  24. Singh, P. & Banik, R. M. Biochemical characterization and antitumor study of L-Glutaminase from Bacillus cereus MTCC 1305. Appl. Biochem. Biotech. 171, 522–531 (2013).

  25. Shemesh, M. & Chai, Y. R. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via Histidine Kinase KinD signaling. J. Bacteriol. 195, 2747–2754 (2013).

  26. Liu, N. et al. Transcription factor Spo0A regulates the biosynthesis of difficidin in Bacillus amyloliquefaciens. Microbiol. Spectr. 11, e0104423 (2023).

  27. Lichtenberg, M. et al. Cyclic-di-GMP signaling controls metabolic activity in Pseudomonas aeruginosa. Cell. Rep. 41, 111515 (2022).

    Google Scholar 

  28. Kennelly, C., Tran, P. & Prindle, A. Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Cell. Rep. 43, 114154 (2024).

    Google Scholar 

  29. Zheng, Y. Q., Wang, D. & Ma, L. Y. Z. Effect of polyhexamethylene biguanide in combination with undecylenamidopropyl betaine or PslG on biofilm clearance. Int. J. Mol Sci. 22, 768 (2021).

    Google Scholar 

  30. Goc, A., Sumera, W., Rath, M. & Niedzwiecki, A. Antibacterial and antibiofilm effects of L-Carnitine-Fumarate on oral streptococcal strains streptococcus mutans and streptococcus sobrinus. Microorganisms 12, 1613 (2024).

    Google Scholar 

  31. Zhang, Y. et al. Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. LWT 92, 133–139 (2018).

    Google Scholar 

  32. Çam, S. & Badilli, I. The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains. Folia. Microbiol. 69, 613–624 (2023).

    Google Scholar 

  33. Wang, S. et al. Unveiling the occurrence and non-negligible role of amino sugars in waste activated sludge fermentation by an enriched chitin-degradation consortium. Environ. Sci. Technol. 58, 1966–1975 (2024).

    Google Scholar 

  34. Pasvolsky, R., Zakin, V., Ostrova, I. & Shemesh, M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int. J. Food Microbiol. 181, 19–27 (2014).

    Google Scholar 

  35. Ogura, M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation RegulatesylxREncoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front. Microbiol. 11, 590828 (2020).

  36. Zhang, J. et al. Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis. Microbiol. Res. 292, 127979 (2025).

  37. Kolodkin-Gal, I. et al. Amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).

    Google Scholar 

  38. Lv, Q. J. et al. Efficient penetration and in situ polymerization of dopamine in biofilms for the eradication. Chem. Eng. J. 503, 158562 (2025).

    Google Scholar 

  39. Chamlagain, M., Hu, J. N., Sionov, R. V. & Steinberg, D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front. Microbiol. 15, 1333274 (2024).

    Google Scholar 

  40. Majed, R., Faille, C., Kallassy, M. & Gohar, M. Bacillus cereus Biofilms-Same, Only Different. Front. Microbiol. 7, 1054 (2016).

  41. Yuan, L. et al. Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J. Zhejiang Univ-Sci. B. 19, 630–642 (2018).

    Google Scholar 

  42. Li, Z. et al. Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl. Mater. Interfaces. 13, 47272–47282 (2021).

    Google Scholar 

  43. Lv, R. L. et al. Ultrasound: enhance the detachment of exosporium and decrease the hydrophobicity of Bacillus cereus spores. LWT 116, 108473 (2019).

  44. Jindal, S. & Anand, S. Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces. J. Dairy Sci. 101, 5799–5808 (2018).

    Google Scholar 

  45. Zhang, Y. et al. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiol. Res. 254, 126920 (2022).

    Google Scholar 

  46. Böhning, J. et al. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Nat. Commun. 13, 7082 (2022).

  47. Yi, Y., Chen, M., Coldea, T. E., Yang, H. & Zhao, H. Soy protein hydrolysates induce menaquinone-7 biosynthesis by enhancing the biofilm formation of Bacillus subtilis natto. Food. Microbiol. 124, 104599 (2024).

Download references