Data availability
The RNA-sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under accession code GSE310767. Source data for Supplementary Fig. 3 are available in Figshare (https://doi.org/10.6084/m9.figshare.30877082). All other data generated in this study are provided in the Source Data file 1–3. Source data are provided with this paper.
References
-
Bozkurt, B. et al. Heart failure epidemiology and outcomes statistics: a report of the heart failure society of America. J. Card. Fail 29, 1412–1451 (2023).
-
Khan, M. S. et al. Global epidemiology of heart failure. Nat. Rev. Cardiol. 21, 717–734 (2024).
-
Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).
-
Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat. Rev. Cardiol. 20, 309–324 (2023).
-
Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118, 3272–3287 (2023).
-
Burchfield, J. S., Xie, M. & Hill, J. A. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128, 388–400 (2013).
-
Gentile, F. et al. Treating heart failure by targeting the vagus nerve. Heart Fail Rev. 29, 1201–1215 (2024).
-
Konstam, M. A. et al. Advances in our clinical understanding of autonomic regulation therapy using vagal nerve stimulation in patients living with heart failure. Front Physiol. 13, 857538 (2022).
-
Bazoukis, G., Stavrakis, S. & Armoundas, A. A. Vagus nerve stimulation and inflammation in cardiovascular disease: a state-of-the-art review. J. Am. Heart Assoc. 12, e030539 (2023).
-
Verrier, R. L., Libbus, I., Nearing, B. D. & KenKnight, B. H. Multifactorial benefits of chronic vagus nerve stimulation on autonomic function and cardiac electrical stability in heart failure patients with reduced ejection fraction. Front Physiol. 13, 855756 (2022).
-
Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).
-
Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).
-
Nearing, B. D., Libbus, I., Amurthur, B., KenKnight, B. H. & Verrier, R. L. Acute autonomic engagement assessed by heart rate dynamics during vagus nerve stimulation in patients with heart failure in the ANTHEM-HF trial. J. Cardiovasc. Electrophysiol. 27, 1072–1077 (2016).
-
Stavrakis, S. et al. Neuromodulation of inflammation to treat heart failure with preserved ejection fraction: a pilot randomized clinical trial. J. Am. Heart Assoc. 11, e023582 (2022).
-
Jiang, Y., Po, S. S., Amil, F. & Dasari, T. W. Non-invasive low-level tragus stimulation in cardiovascular diseases. Arrhythm. Electrophysiol. Rev. 9, 40–46 (2020).
-
Booth, L. C., Saseetharan, B., May, C. N. & Yao, S. T. Selective efferent vagal stimulation in heart failure. Exp. Physiol. 109, 2001–2005 (2024).
-
Tat, T., Libanori, A., Au, C., Yau, A. & Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 171, 112714 (2021).
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).
-
Omar, R. et al. Biodegradable, biocompatible, and implantable multifunctional sensing platform for cardiac monitoring. ACS Sens 9, 126–138 (2024).
-
Kim, Y.-J. et al. High-performing and capacitive-matched triboelectric implants driven by ultrasound. Adv. Mater. 36, 2307194 (2024).
-
Olofsson, L. P. et al. alpha7 nicotinic acetylcholine receptor and cAMP response element binding protein are essential for prolonged monocyte deactivation by vagus nerve signaling (116.37). J. Immunol. 186, 116.37 (2011).
-
Olofsson, P. S. et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron. Med. 2, 37–42 (2015).
-
Tanaka, S. et al. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc. Natl. Acad. Sci. USA 118, e2021758118 (2021).
-
Kakinuma, Y. et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1α. FEBS Lett. 579, 2111–2118 (2005).
-
Resende, R. R. & Adhikari, A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun. Signal 7, 20 (2009).
-
Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).
-
van der Wal, M. H. L., Jaarsma, T. & van Veldhuisen, D. J. Non-compliance in patients with heart failure; how can we manage it?. Eur. J. Heart Fail 7, 5–17 (2005).
-
Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail 6, 606–619 (2013).
-
Miller, L., Birks, E., Guglin, M., Lamba, H. & Frazier, O.H. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 124, 1658–1678 (2019).
-
Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J. Am. Coll. Cardiol. 79, e263–e421 (2022).
-
Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).
-
Leopold, J. A. & Loscalzo, J. The emerging role of precision medicine in cardiovascular disease. Circ. Res. 122, 1302–1315 (2018).
-
Roy, A. et al. Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB J. 30, 688–701 (2016).
-
Zhao, L. et al. Choline attenuates cardiac fibrosis by inhibiting p38MAPK signaling possibly by acting on M3 muscarinic acetylcholine receptor. Front Pharm. 10, 1386 (2019).
-
Leib, C. et al. Role of the cholinergic antiinflammatory pathway in murine autoimmune myocarditis. Circ. Res 109, 130–140 (2011).
-
Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).
-
Báez-Pagán, C. A., Delgado-Vélez, M. & Lasalde-Dominicci, J. A. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J. Neuroimmun. Pharm. 10, 468–476 (2015).
-
Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125, 117–146 (2019).
-
Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982 (2015).
-
Olshansky, B., Sabbah, H. N., Hauptman, P. J. & Colucci, W. S. Parasympathetic nervous system and heart failure. Circulation 118, 863–871 (2008).
-
Guo, Z. et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J. Biol. Sci. 18, 826–840 (2022).
-
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
Acknowledgements
We thank the Animal Experimental Center of Renmin Hospital of Wuhan University for animal care and housing support. This work was supported by grants from The Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20269) (Q.Z.T), The National Natural Science Foundation of China (No. 82400281) (C.Y.K), and The Fundamental Research Funds for the Central Universities(2042023kf0016) (C.Y.K), National Natural Science Foundation of China (T2125003, U25A20417) (Z.L.), Beijing Natural Science Foundation (L245015, Z240022, 25JL006) (Z.L.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Ethics declarations
Competing interests
All authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Stavros Stavrakis, who co-reviewed with Maria Toumpourleka, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Guo, Z., Chao, SY., Kong, CY. et al. A fully degradable triboelectric vagus nerve stimulator for attenuating cardiac remodeling and heart failure at different stages. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68619-6
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41467-026-68619-6
