Homotypic membrane-powered electrochemical microfluidic analysis of extracellular vesicles for precise cancer diagnosis

homotypic-membrane-powered-electrochemical-microfluidic-analysis-of-extracellular-vesicles-for-precise-cancer-diagnosis
Homotypic membrane-powered electrochemical microfluidic analysis of extracellular vesicles for precise cancer diagnosis

Data availability

The proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the dataset identifier PXD072914. All other data generated in this study are provided in the paper, Supplementary Information and Source Data file. Source data are provided with this paper. Additional requests for information or materials should be addressed, and will be fulfilled by zywang@njnu.edu.cn (Z. Wang), conezimint@shu.edu.cn (Y. Cao), and jingzhao@t.shu.edu.cn (J. Zhao). Source data are provided with this paper.

References

  1. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    Google Scholar 

  2. Gan, J. J. et al. Biomimetic nanoparticles with cell-membrane camouflage for rheumatoid arthritis. Matter 7, 794–825 (2024).

    Google Scholar 

  3. Shi, S. L. et al. Erythrocyte membrane-camouflaged nanodelivery strategy enhances gene editing efficiency of Cas9 RNP for boosting tumor senescence. Chem. Eng. J. 494, 153152 (2024).

    Google Scholar 

  4. Yang, Y. et al. Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Sig. Transduct. Target. Ther. 9, 158 (2024).

    Google Scholar 

  5. Wan, Y. et al. Erythrocyte membrane camouflaged nanotheranostics for optical molecular imaging-escorted self-oxygenation photodynamic therapy. Small 20, 2309026 (2024).

    Google Scholar 

  6. Li, H. Z. et al. Light-driven self-recruitment of biomimetic semiconducting polymer nanoparticles for precise tumor vascular disruption. Adv. Mater. 35, 2210920 (2023).

    Google Scholar 

  7. Kong, J. L. et al. An ultrasmall Cu/Cu2O nanoparticle-based diselenide-bridged nanoplatform mediating reactive oxygen species scavenging and neuronal membrane enhancement for targeted therapy of ischemic stroke. ACS Nano 18, 4140–4158 (2024).

    Google Scholar 

  8. Zhou, Y. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv. Mater. 35, 2210691 (2023).

    Google Scholar 

  9. Cui, J. et al. “Trojan Horse” phototheranostics: fine-engineering NIR-II AIEgen camouflaged by cancer cell membrane for homologous-targeting multimodal imaging-guided phototherapy. Adv. Mater. 35, 2302639 (2023).

    Google Scholar 

  10. Wei, K. J. et al. A DNA logic circuit equipped with a biological amplifier loaded into biomimetic ZIF-8 nanoparticles enables accurate identification of specific cancers in vivo. Angew. Chem. Int. Ed. 62, e202307025 (2023).

    Google Scholar 

  11. Xu, Y. et al. A smart nanomedicine unleashes a dual assault of glucose starvation and cuproptosis to supercharge αPD-L1 therapy. Adv. Sci. 12, 2411378 (2025).

    Google Scholar 

  12. Lu, Y. et al. Tumor cell membrane-camouflaged vortex magnetic nanoannulars programmed by low-frequency magnetic field: a novel anti-cancer delivery system in triple-negative breast cancer. Adv. Funct. Mater. 34, 2401940 (2024).

    Google Scholar 

  13. Gong, H. et al. Nanomaterial biointerfacing via mitochondrial membrane coating for targeted detoxification and molecular detection. Nano Lett. 21, 2603–2609 (2021).

    Google Scholar 

  14. Gong, H. et al. Biomembrane-modified field effect transistors for sensitive and quantitative detection of biological toxins and pathogens. ACS Nano 13, 3714–3722 (2019).

    Google Scholar 

  15. Kim, Y. et al. Caco-2 cell-derived biomimetic electrochemical biosensor for cholera toxin detection. Biosens. Bioelectron. 226, 115105 (2023).

    Google Scholar 

  16. Lu, Y. P. et al. Cancer cell membrane-based materials for biomedical applications. Small 20, 2306540 (2024).

    Google Scholar 

  17. Loibl, S., Poortmans, P., Morrow, M., Denkert, C. & Curigliano, G. Breast cancer. The Lancet 397, 1750–1769 (2021).

    Google Scholar 

  18. Gao, Z. J. et al. Single-cell analyses reveal evolution mimicry during the specification of breast cancer subtype. Theranostics 14, 3104–3126 (2024).

    Google Scholar 

  19. Houlahan, K. E. et al. Complex rearrangements fuel ER and HER2 breast tumours. Nature 638, 510–518 (2025).

    Google Scholar 

  20. Denkert, C. et al. Dynamics of molecular heterogeneity in high-risk luminal breast cancer-From intrinsic to adaptive subtyping. Cancer Cell 43, 232-247.e4 (2025).

    Google Scholar 

  21. Dorado, E. et al. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J. Extracell. Vesicles. 13, e12419 (2024).

    Google Scholar 

  22. Su, X., Shan, Z. & Duan, S. Harnessing extracellular vesicles using liquid biopsy for cancer diagnosis and monitoring: highlights from AACR Annual Meeting 2024. J. Hematol. Oncol. 17, 55 (2024).

    Google Scholar 

  23. Loconte, L. et al. Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV-labelling methods. J. Extracell. Vesicles. 12, e12384 (2023).

    Google Scholar 

  24. Cao, Y. et al. Molecular characterization of exosomes for subtype-based diagnosis of breast cancer. J. Am. Chem. Soc. 144, 13475–13486 (2022).

    Google Scholar 

  25. Chattrairat, K. et al. All-in-One nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. ACS Nano 17, 2235–2244 (2023).

    Google Scholar 

  26. Cao, Y. et al. In situ programmable DNA circuit-promoted electrochemical characterization of stemlike phenotype in breast cancer. J. Am. Chem. Soc. 143, 16078–16086 (2021).

    Google Scholar 

  27. Liao, J. et al. Revolutionizing neurocare: biomimetic nanodelivery via cell membranes. Adv. Mater. 36, 2402445 (2024).

    Google Scholar 

  28. Kugeratski, F. G. et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell. Biol. 23, 631–641 (2022).

    Google Scholar 

  29. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Google Scholar 

  30. Webber, J. & Clayton, A. How pure are your vesicles? J. Extracell. Vesicles 2, 19861 (2013).

    Google Scholar 

  31. Liu, W. et al. Recent advances of cell membrane-coated nanomaterials for biomedical applications. Adv. Funct. Mater. 30, 2003559 (2020).

    Google Scholar 

  32. Tapeino, C. et al. Cell membrane-coated magnetic nanocubes with a homotypic targeting ability increase intracellular temperature due to ROS scavenging and act as a versatile theranostic system for glioblastoma multiforme. Adv. Healthcare Mater. 8, 1900612 (2019).

    Google Scholar 

  33. Kaur, S. et al. Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinoma cells. J. Extracell. Vesicles. 11, e12265 (2022).

    Google Scholar 

  34. Zhang, W. Q. et al. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat. Commun. 15, 5670 (2024).

    Google Scholar 

  35. Bischof, J. C. & He, X. Thermal stability of proteins. Ann. NY Acad. Sci. 1066, 12–33 (2006).

    Google Scholar 

  36. Hansen, S., Hupp, T. R. & Lane, D. P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. J. Biol. Chem. 271, 3917–3924 (1996).

    Google Scholar 

  37. Wu, L. T. et al. DNA origami-engineered plasmonic nanoprobes for targeted cancer imaging. Adv. Funct. Mater. 34, 2309929 (2024).

    Google Scholar 

  38. Yang, S. et al. Proximity-guaranteed DNA machine for accurate identification of breast cancer extracellular vesicles. ACS Sens 9, 2194–2202 (2024).

    Google Scholar 

  39. Jiang, Z. J. et al. An electrochemiluminescent sensor based on glycosyl imprinting and aptamer for the detection of cancer-related extracellular vesicles. Anal. Chem. 96, 2550–2558 (2024).

    Google Scholar 

  40. Mingli, Y. et al. Paper-based lipid bilayer magnetic interface for ultrasensitive assay of tumor-derived extracellular vesicles PD-L1. Sensor Actuat. B-Chem 399, 134819 (2024).

    Google Scholar 

  41. Zhang, M. et al. A homogeneous electrochemical sensing platform based on DNAzyme walker for accurate detection of breast cancer exosomes. Sensor Actuat. B-Chem 404, 135252 (2024).

    Google Scholar 

  42. Cao, Y. et al. Proximity labeling-assisted click conjugation for electrochemical analysis of specific subpopulations in circulating extracellular vesicles. Biosens. Bioelectron. 255, 116245 (2024).

    Google Scholar 

  43. Wang, Y. et al. Dynamically controllable hot spots in DNA-derived hydrogel scaffold SERS substrate for exosome recognition using DNA self-assembly amplification. Chem. Eng. J. 496, 154270 (2024).

    Google Scholar 

  44. Li, Y. et al. Thermophoretic glycan profiling of extracellular vesicles for triple-negative breast cancer management. Nat. Commun. 15, 2292 (2024).

    Google Scholar 

  45. Zhai, J. et al. Drug screening on digital microfluidics for cancer precision medicine. Nat. Commun. 15, 4363 (2024).

    Google Scholar 

  46. Wang, X. L. et al. Detection of prostate specific antigen in whole blood by microfluidic chip integrated with dielectrophoretic separation and electrochemical sensing. Biosens. Bioelectron. 204, 114057 (2022).

    Google Scholar 

  47. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    Google Scholar 

  48. Nolan, E., Lindeman, G. J. & Visvader, J. E. Deciphering breast cancer: from biology to the clinic. Cell 186, 1708–1728 (2023).

    Google Scholar 

  49. Tan, J. et al. Engineering cell membranes: from extraction strategies to emerging biosensing applications. Anal. Chem. 96, 7880–7894 (2024).

    Google Scholar 

  50. Kim, I. et al. Erythrocyte-camouflaged biosensor for α-hemolysin detection. Biosens. Bioelectron. 185, 113267 (2021).

    Google Scholar 

  51. Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res. 47, D1211–D1217 (2019).

    Google Scholar 

  52. Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 50, D1522–D1527 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 82470534, Y.C.; Grant Nos. 22222407 and 22176099, Z.W.) and the Natural Science Foundation of Shanghai (Grant No. 23ZR1421400, Y.C.).

Author information

Author notes

  1. These authors contributed equally: Zihan Zou, Xi Jin.

Authors and Affiliations

  1. Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai, China

    Zihan Zou, Lijuan Li, Yi Pan, Guozhang Zhou, Ya Cao & Jing Zhao

  2. Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China

    Xi Jin

  3. State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, China

    Xiaomeng Yu

  4. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China

    Zhaoyin Wang

Authors

  1. Zihan Zou
  2. Xi Jin
  3. Xiaomeng Yu
  4. Lijuan Li
  5. Yi Pan
  6. Guozhang Zhou
  7. Zhaoyin Wang
  8. Ya Cao
  9. Jing Zhao

Contributions

Z.W., Y.C., and J.Z. designed and supervised the study; Z.Z., X.J., X.Y., L.L., Y.P., and G.Z. performed the experiments; Z.Z., X.J., X.Y., L.L., and Y.C. analyzed and interpreted the data; Z.Z., Y.C., and J.Z. wrote the original manuscript; all co-authors reviewed and edited the final manuscript.

Corresponding authors

Correspondence to Zhaoyin Wang, Ya Cao or Jing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Gianni Ciofani, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Jin, X., Yu, X. et al. Homotypic membrane-powered electrochemical microfluidic analysis of extracellular vesicles for precise cancer diagnosis. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68770-0