References
-
Sharma, A., Bischof, J. C. & Finger, E. B. Liver cryopreservation for regenerative medicine applications. Regen Eng. Transl Med. 7, 57–65 (2021).
-
Palma, E., Doornebal, E. J. & Chokshi, S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol. Int. 13, 51–57 (2019).
-
Starlinger, P., Luyendyk, J. P. & Groeneveld, D. J. Hemostasis and liver regeneration. Semin Thromb. Hemost. 46, 735–742 (2020).
-
Li, Y., Lu, L. & Cai, X. Liver regeneration and cell transplantation for end-stage liver disease. Biomolecules 11, 1–12 (2021).
-
Yamana, H. et al. Cotransplantation with adipose Tissue-derived stem cells improves engraftment of transplanted hepatocytes. Transplantation 106, 1963–1973 (2022).
-
Saitoh, Y. et al. Improvement of hepatocyte engraftment by co-transplantation with pancreatic Islets in hepatocyte transplantation. J. Tissue Eng. Regen Med. 15, 361–374 (2021).
-
Pegg, D. Principles of cryopreservation. Methods Mol. Biol. 368, 39–57 (2007).
-
Sandros, J. et al. Mechanism of cell damage during freezing and thawing and its prevention. Nat. 1965 2054978. 205, 1284–1287 (1965).
-
Azam, I. & Benson, J. D. Silymarin mediated osmotic responses and damage in HepG2 cell suspensions and monolayers. Cryobiology 112, 104552 (2023).
-
Bald, W. B. On crystal size and cooling rate. J. Microsc. 143, 89–102 (1986).
-
Uhlmann, D. R. A kinetic treatment of glass formation. J. Non Cryst. Solids. 7, 337–348 (1972).
-
Fletcher, N. H. Structural aspects of the ice-water system. Rep. Prog Phys. 34, 913 (1971).
-
Akiyama, Y., Shinose, M. & Watanabe, H. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc. Natl. Acad. Sci. U S A. 116, 7738–7743 (2019).
-
Risco, R., Elmoazzen, H., Doughty, M., He, X. & Toner, M. Thermal performance of quartz capillaries for vitrification. Cryobiology 55, 222–229 (2007).
-
Katkov, I. I., Bolyukh, V. F. & Sukhikh, G. T. KrioBlast TM as a new technology of Hyper-fast cryopreservation of cells and Tissues. Part I. Thermodynamic aspects and potential applications in reproductive and regenerative medicine. Bull. Exp. Biol. Med. 164, 530–535 (2018).
-
Huebinger, J. et al. Direct measurement of water States in cryopreserved cells reveals tolerance toward ice crystallization. Biophys. J. 110, 840–849 (2016).
-
Wowk, B. Thermodynamic aspects of vitrification. Cryobiology. 60 11–22 at (2010). https://doi.org/10.1016/j.cryobiol.2009.05.007
-
Gilkey, J. C. & Staehelin, L. A. Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron. Microsc Tech. 3, 177–210 (1986).
-
Glöckner, R., Rost, M., Pissowotzki, K. & Müller, D. Monooxygenation, conjugation and other functions in cryopreserved rat liver slices until 24 h after thawing. Toxicology 161, 103–109 (2001).
-
Amini, M. & Benson, J. D. Technologies for vitrification based cryopreservation. Bioengineering 10, 508 (2023).
-
Patra, T. & Gupta, M. K. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 104, 8–14 (2022).
-
van Harreveld, A. & Crowell, J. Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149, 381–385 (1964).
-
Escaig, J. New instruments which facilitate rapid freezing at 83 K and 6 K. J. Microsc. 126, 221–229 (1982).
-
Heuser, J., Reese, T., Dennis, M. & Jan, Y. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell. Biol. 81, 275 (1979).
-
Heuser, J., Reese, T. & Landis, D. Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp. Quant. Biol. 40, 17–24 (1976).
-
Boyne, A. A gentle, bounce-free assembly for quick-freezing tissues for electron microscopy: application to isolated Torpedine ray electrocyte stacks. J. Neurosci. Methods. 1, 353–364 (1979).
-
Phillips, T. E. & Boyne, A. F. Liquid nitrogen-based quick freezing: experiences with bounce‐free delivery of cholinergic nerve terminals to a metal surface. J. Electron. Microsc Tech. 1, 9–29 (1984).
-
Heath, I. B. A simple and inexpensive liquid helium cooled ‘slam freezing’ device. J. Microsc. 135, 75–82 (1984).
-
Studer, D. et al. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nat. Protoc. 2014 96 9, 1480–1495 (2014).
-
Miyata, K., Hayakawa, S., Kajiwara, K. & Kanno, H. Supercooling and vitrification of aqueous glycerol solutions at normal and high pressures. Cryobiology 65, 113–116 (2012).
-
Preciado, J. & Rubinsky, B. Isochoric preservation: a novel characterization method. Cryobiology 60, 23–29 (2010).
-
Ukpai, G., Năstase, G., Şerban, A. & Rubinsky, B. Pressure in isochoric systems containing aqueous solutions at subzero centigrade temperatures. PLoS One 12, 1–16 (2017).
-
Towey, J. J. & Dougan, L. Structural examination of the impact of glycerol on water structure. J. Phys. Chem. B. https://doi.org/10.1021/jp2093862 (2012).
-
Wan, L. et al. Preservation of rat hearts in subfreezing temperature isochoric conditions to – 8 C and 78 MPa. Biochem. Biophys. Res. Commun. 496, 852–857 (2018).
-
Năstase, G., Lyu, C., Ukpai, G., Şerban, A. & Rubinsky, B. Isochoric and isobaric freezing of fish muscle. Biochem. Biophys. Res. Commun. 485, 279–283 (2017).
-
Preciado, J. & Rubinsky, B. The effect of isochoric freezing on mammalian cells in an extracellular phosphate buffered solution. Cryobiology 82, 155–158 (2018).
-
Chang, B. et al. On the pressure dependence of salty aqueous eutectics. Cell. Rep. Phys. Sci. 3, 100856 (2022).
-
Benson, J. Ultra-rapid tissue cryopreservation method and apparatus. (2018).
-
Amini, M. & Benson, J. D. Cell and tissue cryopreservation through pressure enhanced solid surface ultra-rapid cooling. Cryobiology 113, 104614 (2023).
-
da Silva, A. M. et al. Combination of intracellular cryoprotectants preserves the structure and the cells proliferative capacity potential of adult collared peccary testicular tissue subjected to solid surface vitrification. Cryobiology 91, 53–60 (2019).
-
Lima, G. L. et al. Effect of cryoprotectant type and concentration on the vitrification of collared peccary (Pecari tajacu) ovarian tissue. Anim. Reprod. Sci. 205, 126–133 (2019).
-
Amini, M. & Benson, J. Numerical analysis of cooling within a sealed container under high-pressure solid-surface conditions. Cryobiology 117, 105002 (2024).
-
Brüggeller, P. & Mayer, E. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288, 569–571 (1980).
-
Bi, D., Chen, H. & Ye, T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics (Guildf). 52, 403–409 (2012).
-
Decaens, C., Durand, M., Grosse, B. & Cassio, D. Which in vitro models could be best used to study hepatocyte polarity? Biol. Cell. 100, 387–398 (2008).
-
Amini, M. & Benson, J. D. Analysis of cryopreservation media thermophysical characteristics after ultra-rapid cooling through differential scanning calorimetry. Cryobiology 116, 104939 (2024).
-
Molina, I. et al. Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems. Fertil. Steril. 106, 127–132 (2016).
-
MacCormack, E., Mandelis, A., Munidasa, M., Farahbakhsh, B. & Sang, H. Measurements of the thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment. Int. J. Thermophys. 18, 221–250 (1997).
-
Amini, M. & Benson, J. D. Investigation of cryoprotectant thermophysical properties in the fast cooling cryopreservation by DSC technique. Cryobiology 109, 34 (2022).
-
Najafi, A., Asadi, E. & Benson, J. D. Comparative effects of a calcium chelator (BAPTA-AM) and melatonin on cryopreservation-induced oxidative stress and damage in ovarian tissue. Sci. Rep. 2023. 131 13, 1–14 (2023).
-
Bidzan, M., Eter, N. & Uhlig, C. E. Efficacy of emergency penetrating keratoplasty with cryopreserved human donor Corneas. Ophthalmol. Ther. 13, 979–994 (2024).
-
Day, S. H., Nicoll-Griffith, D. A. & Silva, J. M. Cryopreservation of rat and human liver slices by rapid freezing. Cryobiology https://doi.org/10.1006/cryo.1999.2161 (1999).
-
Pabón, D. et al. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity. Andrology 7, 293–301 (2019).
-
de Graaf, I. A. M., van der Voort, D., Brits, J. H. F. G. & Koster, H. J. Increased Post-Thaw viability and phase I and II biotransformation activity in cryopreserved rat liver slices after improvement of a Fast-Freezing method. Drug Metab. Dispos. 28, 1100–1106 (2000).
-
de Graaf, I. A. M. et al. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology 54, 1–12 (2007).
-
Gurtovenko, A. A. & Anwar, J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B. https://doi.org/10.1021/jp073113e (2007).
-
Benson, J. D., Higgins, A. Z., Desai, K. & Eroglu, A. A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80, 144–155 (2018).
-
Warner, R. M., Brown, K. S., Benson, J. D., Eroglu, A. & Higgins, A. Z. Multiple cryoprotectant toxicity model for vitrification solution optimization. Cryobiology 108, 1–9 (2022).
-
Moriscot, C., Schoehn, G. & Housset, D. High pressure freezing and cryo-sectioning can be used for protein structure determination by electron diffraction. Ultramicroscopy 254, 113834 (2023).
-
de Beer, M. et al. Precise targeting for 3D cryo-correlative light and electron microscopy volume imaging of tissues using a FinderTOP. Commun. Biol. 6, 1–9 (2023). (2023).
-
Reader, K. L. et al. High pressure frozen oocytes have improved ultrastructure but reduced cleavage rates compared to conventionally fixed or vitrified oocytes. Reprod. Fertil. Dev. 34, 1135–1144 (2022).
-
Sun, W. Q. Water sorption and glass transition behavior of Polyalditol (PD30), a new nonreactive malto-oligosaccharide cryo- and drying-protectant. Cell. Preserv Technol. 5, 77–84 (2007).
-
Han, Z. & Bishop, J. C. PERSPECTIVE: critical cooling and warming rates as a function of CPA concentration. Cryo Lett. 41, 185–193 (2020).
-
De Kanter, R. & Koster, H. J. Cryopreservation of rat and monkey liver slices. Altern. Lab. Anim. 23, 653–665 (1995).
-
Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nat. 2012 4897415. 489, 274–277 (2012).
-
Quéré, D. Leidenfrost Dynamics. (2013). https://doi.org/10.1146/annurev-fluid-011212-140709 45, 197–215.
-
Song, Y. S. et al. Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc. Natl. Acad. Sci. U. S. A. 107, 4596–4600 (2010).
-
Plattner, H. & Bachmann, L. Cryofixation: a tool in biological ultrastructural research. Elsevier 79, 237–304 (1982).
-
Bogaard, R. H., Desai, P. D., Li, H. H. & Ho, C. Y. Thermophysical properties of stainless steels. Thermochim Acta. 218, 373–393 (1993).
-
Santos, M. V., Sansinena, M., Chirife, J. & Zaritzky, N. Convective heat transfer coefficients of open and closed Cryotop® systems under different warming conditions. Cryobiology 84, 20–26 (2018).
-
Liu, S. & Li, F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol. 18, 1–12 (2020).
-
Dewyse, L., Reynaert, H. & van Grunsven, L. A. Best practices and progress in precision-cut liver slice cultures. International Journal of Molecular Sciences vol. 22 at (2021). https://doi.org/10.3390/ijms22137137
-
Fisher, R. L., Ulreich, J. B., Nakazato, P. Z. & Brendel, K. Histological and biochemical evaluation of precision-cut liver slices. Taylor Fr. L Fish. U Judith N Paul B KlausToxicology Methods 2001•Taylor Fr. 11, 59–79 (2001).
-
Sartori, N., Richter, K. & Dubochet, J. Vitrification depth can be increased more than 10-fold by high‐pressure freezing. J. Microsc. 172, 55–61 (1993).
-
Shimoni, K. & Müller, M. On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J. Microsc. 192, 236–247 (1998).
-
STUDER, D. & WOHLWEND, M. I. C. H. E. L. M. BUSCHMANN, M. D. Vitrification of articular cartilage by high-pressure freezing. J. Microsc. 179, 321–322 (1995).
-
Kanno, H., Speedy, R. J. & Angell, C. A. Supercooling of water to -92°C under pressure. Sci. (80-). 189, 880–881 (1975).
-
Suppes, G. J., Egan, S., Casillan, A. J., Chan, K. W. & Seckar, B. Impact of high pressure freezing on DH5α Escherichia coli and red blood cells. Cryobiology 47, 93–101 (2003).
-
Riehle, U. & Hochli, M. The theory and technique of high pressure freezing. Free Tech. Appl. Soc. Fr. Microsc Electron 1, 31–61 (1973).
-
More and Heochli. The influence of high pressure freezing on living cells. Int. Congr. Electron Microsc. 7th. (1970).
-
Moor, H., Bellin, G., Sandri, C. & Akert, K. The influence of high pressure freezing on mammalian nerve tissue. Cell. Tissue Res. 209, 201–216 (1980).
-
Moor, H. Theory and practice of high pressure freezing. Cryotech Biol. Electron. Microsc. 175–191. https://doi.org/10.1007/978-3-642-72815-0_8 (1987).
-
Rios, J. L. J. & Rabin, Y. Thermal expansion of blood vessels in low cryogenic temperatures, part II: vitrification with VS55, DP6, and 7.05 M DMSO. Cryobiology 52, 284–294 (2006).
-
Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
-
Elosegui-Artola, A. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Curr. Opin. Cell. Biol. 72, 10–18 (2021).
-
Manuchehrabadi, N. et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9, 1–10 (2017).
-
Rabin, Y., Taylor, M. J., Walsh, J. R., Baicu, S. & Steif, P. S. Cryomacroscopy of vitrification I: A prototype and experimental observations on the cocktails VS55 and DP6. liebertpub.comY Rabin, MJ Taylor, JR Walsh, S Baicu, PS SteifCell Preserv. Technol. 2005•liebertpub.com 3, 169–183 (2005).
-
Zhan, T. et al. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. Analyst 148, 3312–3320 (2023).
-
Abdelhady, A. W. et al. Ice formation and its elimination in cryopreservation of oocytes. Sci. Rep. 14, 1–13 (2024).
-
Jong, K. S. et al. The impact of cryoprotective media on cryopreservation of cells using loading Trehalose. Cryobiology 92, 258–259 (2020).
-
Lamon, M. et al. Cryopreservation of human amniotic membrane for ocular surface reconstruction: a comparison between protocols. Cell. Tissue Bank. 23, 851–861 (2022).
-
Eagle, H. Amino acid metabolism in mammalian cell cultures. Sci. (80-). 130, 432–437 (1959).
-
Luckenbach, T., Altenburger, R. & Epel, D. Teasing apart activities of different types of ABC efflux pumps in bivalve gills using the concepts of independent action and concentration addition. Mar. Environ. Res. 66, 75–76 (2008).
-
Graham, J. M. Homogenization of mammalian tissues. Sci. World J. 2, 1626–1629 (2002).
