Pressure enhanced dual-solid-surface ultra-rapid cooling improves post-thaw recovery in hepatocytes and precision cut liver slices

pressure-enhanced-dual-solid-surface-ultra-rapid-cooling-improves-post-thaw-recovery-in-hepatocytes-and-precision-cut-liver-slices
Pressure enhanced dual-solid-surface ultra-rapid cooling improves post-thaw recovery in hepatocytes and precision cut liver slices

References

  1. Sharma, A., Bischof, J. C. & Finger, E. B. Liver cryopreservation for regenerative medicine applications. Regen Eng. Transl Med. 7, 57–65 (2021).

    Google Scholar 

  2. Palma, E., Doornebal, E. J. & Chokshi, S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol. Int. 13, 51–57 (2019).

    Google Scholar 

  3. Starlinger, P., Luyendyk, J. P. & Groeneveld, D. J. Hemostasis and liver regeneration. Semin Thromb. Hemost. 46, 735–742 (2020).

    Google Scholar 

  4. Li, Y., Lu, L. & Cai, X. Liver regeneration and cell transplantation for end-stage liver disease. Biomolecules 11, 1–12 (2021).

  5. Yamana, H. et al. Cotransplantation with adipose Tissue-derived stem cells improves engraftment of transplanted hepatocytes. Transplantation 106, 1963–1973 (2022).

    Google Scholar 

  6. Saitoh, Y. et al. Improvement of hepatocyte engraftment by co-transplantation with pancreatic Islets in hepatocyte transplantation. J. Tissue Eng. Regen Med. 15, 361–374 (2021).

    Google Scholar 

  7. Pegg, D. Principles of cryopreservation. Methods Mol. Biol. 368, 39–57 (2007).

    Google Scholar 

  8. Sandros, J. et al. Mechanism of cell damage during freezing and thawing and its prevention. Nat. 1965 2054978. 205, 1284–1287 (1965).

    Google Scholar 

  9. Azam, I. & Benson, J. D. Silymarin mediated osmotic responses and damage in HepG2 cell suspensions and monolayers. Cryobiology 112, 104552 (2023).

    Google Scholar 

  10. Bald, W. B. On crystal size and cooling rate. J. Microsc. 143, 89–102 (1986).

    Google Scholar 

  11. Uhlmann, D. R. A kinetic treatment of glass formation. J. Non Cryst. Solids. 7, 337–348 (1972).

    Google Scholar 

  12. Fletcher, N. H. Structural aspects of the ice-water system. Rep. Prog Phys. 34, 913 (1971).

    Google Scholar 

  13. Akiyama, Y., Shinose, M. & Watanabe, H. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc. Natl. Acad. Sci. U S A. 116, 7738–7743 (2019).

    Google Scholar 

  14. Risco, R., Elmoazzen, H., Doughty, M., He, X. & Toner, M. Thermal performance of quartz capillaries for vitrification. Cryobiology 55, 222–229 (2007).

    Google Scholar 

  15. Katkov, I. I., Bolyukh, V. F. & Sukhikh, G. T. KrioBlast TM as a new technology of Hyper-fast cryopreservation of cells and Tissues. Part I. Thermodynamic aspects and potential applications in reproductive and regenerative medicine. Bull. Exp. Biol. Med. 164, 530–535 (2018).

    Google Scholar 

  16. Huebinger, J. et al. Direct measurement of water States in cryopreserved cells reveals tolerance toward ice crystallization. Biophys. J. 110, 840–849 (2016).

    Google Scholar 

  17. Wowk, B. Thermodynamic aspects of vitrification. Cryobiology. 60 11–22 at (2010). https://doi.org/10.1016/j.cryobiol.2009.05.007

  18. Gilkey, J. C. & Staehelin, L. A. Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron. Microsc Tech. 3, 177–210 (1986).

    Google Scholar 

  19. Glöckner, R., Rost, M., Pissowotzki, K. & Müller, D. Monooxygenation, conjugation and other functions in cryopreserved rat liver slices until 24 h after thawing. Toxicology 161, 103–109 (2001).

    Google Scholar 

  20. Amini, M. & Benson, J. D. Technologies for vitrification based cryopreservation. Bioengineering 10, 508 (2023).

    Google Scholar 

  21. Patra, T. & Gupta, M. K. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 104, 8–14 (2022).

    Google Scholar 

  22. van Harreveld, A. & Crowell, J. Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149, 381–385 (1964).

    Google Scholar 

  23. Escaig, J. New instruments which facilitate rapid freezing at 83 K and 6 K. J. Microsc. 126, 221–229 (1982).

    Google Scholar 

  24. Heuser, J., Reese, T., Dennis, M. & Jan, Y. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell. Biol. 81, 275 (1979).

    Google Scholar 

  25. Heuser, J., Reese, T. & Landis, D. Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp. Quant. Biol. 40, 17–24 (1976).

    Google Scholar 

  26. Boyne, A. A gentle, bounce-free assembly for quick-freezing tissues for electron microscopy: application to isolated Torpedine ray electrocyte stacks. J. Neurosci. Methods. 1, 353–364 (1979).

    Google Scholar 

  27. Phillips, T. E. & Boyne, A. F. Liquid nitrogen-based quick freezing: experiences with bounce‐free delivery of cholinergic nerve terminals to a metal surface. J. Electron. Microsc Tech. 1, 9–29 (1984).

    Google Scholar 

  28. Heath, I. B. A simple and inexpensive liquid helium cooled ‘slam freezing’ device. J. Microsc. 135, 75–82 (1984).

    Google Scholar 

  29. Studer, D. et al. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nat. Protoc. 2014 96 9, 1480–1495 (2014).

    Google Scholar 

  30. Miyata, K., Hayakawa, S., Kajiwara, K. & Kanno, H. Supercooling and vitrification of aqueous glycerol solutions at normal and high pressures. Cryobiology 65, 113–116 (2012).

    Google Scholar 

  31. Preciado, J. & Rubinsky, B. Isochoric preservation: a novel characterization method. Cryobiology 60, 23–29 (2010).

    Google Scholar 

  32. Ukpai, G., Năstase, G., Şerban, A. & Rubinsky, B. Pressure in isochoric systems containing aqueous solutions at subzero centigrade temperatures. PLoS One 12, 1–16 (2017).

  33. Towey, J. J. & Dougan, L. Structural examination of the impact of glycerol on water structure. J. Phys. Chem. B. https://doi.org/10.1021/jp2093862 (2012).

    Google Scholar 

  34. Wan, L. et al. Preservation of rat hearts in subfreezing temperature isochoric conditions to – 8 C and 78 MPa. Biochem. Biophys. Res. Commun. 496, 852–857 (2018).

    Google Scholar 

  35. Năstase, G., Lyu, C., Ukpai, G., Şerban, A. & Rubinsky, B. Isochoric and isobaric freezing of fish muscle. Biochem. Biophys. Res. Commun. 485, 279–283 (2017).

    Google Scholar 

  36. Preciado, J. & Rubinsky, B. The effect of isochoric freezing on mammalian cells in an extracellular phosphate buffered solution. Cryobiology 82, 155–158 (2018).

    Google Scholar 

  37. Chang, B. et al. On the pressure dependence of salty aqueous eutectics. Cell. Rep. Phys. Sci. 3, 100856 (2022).

    Google Scholar 

  38. Benson, J. Ultra-rapid tissue cryopreservation method and apparatus. (2018).

  39. Amini, M. & Benson, J. D. Cell and tissue cryopreservation through pressure enhanced solid surface ultra-rapid cooling. Cryobiology 113, 104614 (2023).

    Google Scholar 

  40. da Silva, A. M. et al. Combination of intracellular cryoprotectants preserves the structure and the cells proliferative capacity potential of adult collared peccary testicular tissue subjected to solid surface vitrification. Cryobiology 91, 53–60 (2019).

    Google Scholar 

  41. Lima, G. L. et al. Effect of cryoprotectant type and concentration on the vitrification of collared peccary (Pecari tajacu) ovarian tissue. Anim. Reprod. Sci. 205, 126–133 (2019).

    Google Scholar 

  42. Amini, M. & Benson, J. Numerical analysis of cooling within a sealed container under high-pressure solid-surface conditions. Cryobiology 117, 105002 (2024).

    Google Scholar 

  43. Brüggeller, P. & Mayer, E. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288, 569–571 (1980).

    Google Scholar 

  44. Bi, D., Chen, H. & Ye, T. Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics (Guildf). 52, 403–409 (2012).

    Google Scholar 

  45. Decaens, C., Durand, M., Grosse, B. & Cassio, D. Which in vitro models could be best used to study hepatocyte polarity? Biol. Cell. 100, 387–398 (2008).

    Google Scholar 

  46. Amini, M. & Benson, J. D. Analysis of cryopreservation media thermophysical characteristics after ultra-rapid cooling through differential scanning calorimetry. Cryobiology 116, 104939 (2024).

    Google Scholar 

  47. Molina, I. et al. Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems. Fertil. Steril. 106, 127–132 (2016).

    Google Scholar 

  48. MacCormack, E., Mandelis, A., Munidasa, M., Farahbakhsh, B. & Sang, H. Measurements of the thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment. Int. J. Thermophys. 18, 221–250 (1997).

    Google Scholar 

  49. Amini, M. & Benson, J. D. Investigation of cryoprotectant thermophysical properties in the fast cooling cryopreservation by DSC technique. Cryobiology 109, 34 (2022).

    Google Scholar 

  50. Najafi, A., Asadi, E. & Benson, J. D. Comparative effects of a calcium chelator (BAPTA-AM) and melatonin on cryopreservation-induced oxidative stress and damage in ovarian tissue. Sci. Rep. 2023. 131 13, 1–14 (2023).

    Google Scholar 

  51. Bidzan, M., Eter, N. & Uhlig, C. E. Efficacy of emergency penetrating keratoplasty with cryopreserved human donor Corneas. Ophthalmol. Ther. 13, 979–994 (2024).

    Google Scholar 

  52. Day, S. H., Nicoll-Griffith, D. A. & Silva, J. M. Cryopreservation of rat and human liver slices by rapid freezing. Cryobiology https://doi.org/10.1006/cryo.1999.2161 (1999).

    Google Scholar 

  53. Pabón, D. et al. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity. Andrology 7, 293–301 (2019).

    Google Scholar 

  54. de Graaf, I. A. M., van der Voort, D., Brits, J. H. F. G. & Koster, H. J. Increased Post-Thaw viability and phase I and II biotransformation activity in cryopreserved rat liver slices after improvement of a Fast-Freezing method. Drug Metab. Dispos. 28, 1100–1106 (2000).

  55. de Graaf, I. A. M. et al. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology 54, 1–12 (2007).

    Google Scholar 

  56. Gurtovenko, A. A. & Anwar, J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B. https://doi.org/10.1021/jp073113e (2007).

    Google Scholar 

  57. Benson, J. D., Higgins, A. Z., Desai, K. & Eroglu, A. A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80, 144–155 (2018).

    Google Scholar 

  58. Warner, R. M., Brown, K. S., Benson, J. D., Eroglu, A. & Higgins, A. Z. Multiple cryoprotectant toxicity model for vitrification solution optimization. Cryobiology 108, 1–9 (2022).

    Google Scholar 

  59. Moriscot, C., Schoehn, G. & Housset, D. High pressure freezing and cryo-sectioning can be used for protein structure determination by electron diffraction. Ultramicroscopy 254, 113834 (2023).

    Google Scholar 

  60. de Beer, M. et al. Precise targeting for 3D cryo-correlative light and electron microscopy volume imaging of tissues using a FinderTOP. Commun. Biol. 6, 1–9 (2023). (2023).

  61. Reader, K. L. et al. High pressure frozen oocytes have improved ultrastructure but reduced cleavage rates compared to conventionally fixed or vitrified oocytes. Reprod. Fertil. Dev. 34, 1135–1144 (2022).

    Google Scholar 

  62. Sun, W. Q. Water sorption and glass transition behavior of Polyalditol (PD30), a new nonreactive malto-oligosaccharide cryo- and drying-protectant. Cell. Preserv Technol. 5, 77–84 (2007).

    Google Scholar 

  63. Han, Z. & Bishop, J. C. PERSPECTIVE: critical cooling and warming rates as a function of CPA concentration. Cryo Lett. 41, 185–193 (2020).

    Google Scholar 

  64. De Kanter, R. & Koster, H. J. Cryopreservation of rat and monkey liver slices. Altern. Lab. Anim. 23, 653–665 (1995).

    Google Scholar 

  65. Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nat. 2012 4897415. 489, 274–277 (2012).

    Google Scholar 

  66. Quéré, D. Leidenfrost Dynamics. (2013). https://doi.org/10.1146/annurev-fluid-011212-140709 45, 197–215.

  67. Song, Y. S. et al. Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc. Natl. Acad. Sci. U. S. A. 107, 4596–4600 (2010).

  68. Plattner, H. & Bachmann, L. Cryofixation: a tool in biological ultrastructural research. Elsevier 79, 237–304 (1982).

    Google Scholar 

  69. Bogaard, R. H., Desai, P. D., Li, H. H. & Ho, C. Y. Thermophysical properties of stainless steels. Thermochim Acta. 218, 373–393 (1993).

    Google Scholar 

  70. Santos, M. V., Sansinena, M., Chirife, J. & Zaritzky, N. Convective heat transfer coefficients of open and closed Cryotop® systems under different warming conditions. Cryobiology 84, 20–26 (2018).

    Google Scholar 

  71. Liu, S. & Li, F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol. 18, 1–12 (2020).

    Google Scholar 

  72. Dewyse, L., Reynaert, H. & van Grunsven, L. A. Best practices and progress in precision-cut liver slice cultures. International Journal of Molecular Sciences vol. 22 at (2021). https://doi.org/10.3390/ijms22137137

  73. Fisher, R. L., Ulreich, J. B., Nakazato, P. Z. & Brendel, K. Histological and biochemical evaluation of precision-cut liver slices. Taylor Fr. L Fish. U Judith N Paul B KlausToxicology Methods 2001•Taylor Fr. 11, 59–79 (2001).

    Google Scholar 

  74. Sartori, N., Richter, K. & Dubochet, J. Vitrification depth can be increased more than 10-fold by high‐pressure freezing. J. Microsc. 172, 55–61 (1993).

    Google Scholar 

  75. Shimoni, K. & Müller, M. On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J. Microsc. 192, 236–247 (1998).

    Google Scholar 

  76. STUDER, D. & WOHLWEND, M. I. C. H. E. L. M. BUSCHMANN, M. D. Vitrification of articular cartilage by high-pressure freezing. J. Microsc. 179, 321–322 (1995).

    Google Scholar 

  77. Kanno, H., Speedy, R. J. & Angell, C. A. Supercooling of water to -92°C under pressure. Sci. (80-). 189, 880–881 (1975).

    Google Scholar 

  78. Suppes, G. J., Egan, S., Casillan, A. J., Chan, K. W. & Seckar, B. Impact of high pressure freezing on DH5α Escherichia coli and red blood cells. Cryobiology 47, 93–101 (2003).

    Google Scholar 

  79. Riehle, U. & Hochli, M. The theory and technique of high pressure freezing. Free Tech. Appl. Soc. Fr. Microsc Electron 1, 31–61 (1973).

  80. More and Heochli. The influence of high pressure freezing on living cells. Int. Congr. Electron Microsc. 7th. (1970).

  81. Moor, H., Bellin, G., Sandri, C. & Akert, K. The influence of high pressure freezing on mammalian nerve tissue. Cell. Tissue Res. 209, 201–216 (1980).

    Google Scholar 

  82. Moor, H. Theory and practice of high pressure freezing. Cryotech Biol. Electron. Microsc. 175–191. https://doi.org/10.1007/978-3-642-72815-0_8 (1987).

  83. Rios, J. L. J. & Rabin, Y. Thermal expansion of blood vessels in low cryogenic temperatures, part II: vitrification with VS55, DP6, and 7.05 M DMSO. Cryobiology 52, 284–294 (2006).

    Google Scholar 

  84. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Google Scholar 

  85. Elosegui-Artola, A. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Curr. Opin. Cell. Biol. 72, 10–18 (2021).

    Google Scholar 

  86. Manuchehrabadi, N. et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9, 1–10 (2017).

  87. Rabin, Y., Taylor, M. J., Walsh, J. R., Baicu, S. & Steif, P. S. Cryomacroscopy of vitrification I: A prototype and experimental observations on the cocktails VS55 and DP6. liebertpub.comY Rabin, MJ Taylor, JR Walsh, S Baicu, PS SteifCell Preserv. Technol. 2005•liebertpub.com 3, 169–183 (2005).

  88. Zhan, T. et al. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. Analyst 148, 3312–3320 (2023).

    Google Scholar 

  89. Abdelhady, A. W. et al. Ice formation and its elimination in cryopreservation of oocytes. Sci. Rep. 14, 1–13 (2024).

    Google Scholar 

  90. Jong, K. S. et al. The impact of cryoprotective media on cryopreservation of cells using loading Trehalose. Cryobiology 92, 258–259 (2020).

    Google Scholar 

  91. Lamon, M. et al. Cryopreservation of human amniotic membrane for ocular surface reconstruction: a comparison between protocols. Cell. Tissue Bank. 23, 851–861 (2022).

    Google Scholar 

  92. Eagle, H. Amino acid metabolism in mammalian cell cultures. Sci. (80-). 130, 432–437 (1959).

    Google Scholar 

  93. Luckenbach, T., Altenburger, R. & Epel, D. Teasing apart activities of different types of ABC efflux pumps in bivalve gills using the concepts of independent action and concentration addition. Mar. Environ. Res. 66, 75–76 (2008).

    Google Scholar 

  94. Graham, J. M. Homogenization of mammalian tissues. Sci. World J. 2, 1626–1629 (2002).

    Google Scholar 

Download references