References
-
Spoehr, H. A. Chlorella as a Source of Food. Proc. Am. Philos. Soc. 95, 62–67 (1951).
-
Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. 113, E1516–E1525 (2016).
-
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
-
Giguere, D. J. et al. Telomere-to-telomere genome assembly of Phaeodactylum tricornutum. PeerJ 10, e13607 (2022).
-
Zhang, C. & Hu, H. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar. Genom. 16, 63–66 (2014).
-
Karas, B. J. et al. Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 6, 6925 (2015).
-
Miyahara, M., Aoi, M., Inoue-Kashino, N., Kashino, Y. & Ifuku, K. Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci. Biotechnol. Biochem. 77, 874–876 (2013).
-
Apt, K. E., Grossman, A. R. & Kroth-Pancic, P. G. Stable nuclear transformation of the diatomPhaeodactylum tricornutum. Mol. Gen. Genet. 252, 572–579 (1996).
-
Slattery, S. S. et al. An expanded plasmid-based genetic Toolbox Enables Cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum. ACS Synth. Biol. 7, 328–338 (2018).
-
Slattery, S. S. et al. Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics. Sci. Rep. 12, 7010 (2022).
-
Cochrane, R. R. et al. Rapid method for generating designer algal mitochondrial genomes. Algal Res. 50, 102014 (2020).
-
Walker, E. J. L., Pampuch, M., Chang, N., Cochrane, R. R. & Karas, B. J. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. Plant Physiol. 194, 2217–2228 (2024).
-
Russo, M. T., Rogato, A., Jaubert, M., Karas, B. J. & Falciatore, A. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. J. Phycol. 59, 1114–1122 (2023).
-
Pampuch, M., Walker, E. J. L. & Karas, B. J. Towards synthetic diatoms: The Phaeodactylum tricornutum Pt-syn 1.0 project. Curr. Opin. Green. Sustain. Chem. 35, 100611 (2022).
-
Taparia, Y. et al. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Sci. Rep. 9, 8217 (2019).
-
Walker, E. J. L., Jaafar, T., Kaneshan, A. & Karas, B. J. Resolving replication incompatibility between chloroplast and conjugative plasmids in E. coli. 2025.10.16.682956 Preprint at https://doi.org/10.1101/2025.10.16.682956 (2025).
-
Kindle, K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA (1990).
-
Kassaw, T. K., Paton, A. J. & Peers, G. Episome-based gene expression modulation platform in the model diatom Phaeodactylum tricornutum. ACS Synth. Biol. 11, 191–204 (2022).
-
Martino, A. D., Meichenin, A., Shi, J., Pan, K. & Bowler, C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J. Phycol. 43, 992–1009 (2007).
-
Song, Z., Lye, G. J. & Parker, B. M. Morphological and biochemical changes in Phaeodactylum tricornutum triggered by culture media: Implications for industrial exploitation. Algal Res. 47, 101822 (2020).
-
Avasthi, P., MacQuarrie, C. D. & Radkov, A. Inducing protoplast formation in Phaeodactylum tricornutum by silica deprivation, enzymatic treatment, or cytoskeletal inhibition. The Stacks https://doi.org/10.57844/arcadia-fh8f-xz51 (2023)
-
Ohse, M., Takahashi, K., Kadowaki, Y. & Kusaoke, H. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci. Biotechnol. Biochem 59, 1433–1437 (1995).
-
Szostková, M. & Horáková, D. The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem. Bioenerg. 47, 319–323 (1998).
-
Cochrane, R. R. et al. Superior conjugative plasmids delivered by bacteria to diverse fungi. BioDesign Res. 2022, 9802168 (2022).
-
Gibson, D. G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37, 6984–6990 (2009).
-
Almagro Armenteros, J. J. et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2, e201900429 (2019).
-
Diamond, A. et al. Instability of extrachromosomal DNA transformed into the diatom Phaeodactylum tricornutum. Algal Res. 70, 102998 (2023).
-
Serif, M. et al. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat. Commun. 9, 3924 (2018).
-
Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360 (1995).
-
Hwang, H.-J., Kim, Y. T., Kang, N. S. & Han, J. W. A simple method for removal of the chlamydomonas reinhardtii cell wall using a commercially available Subtilisin (Alcalase). J. Mol. Microbiol. Biotechnol. 28, 169–178 (2018).
-
Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).
-
Borowitzka, M. A. & Volcani, B. E. The Polymorphic Diatom Phaeodactylum Tricornutum: Ultrastructure Of Its Morphotypes. J. Phycol. 14, 10–21 (1978).
-
Yin, W., Zhang, Y., Huang, Q., Pan, Y. & Hu, H. Genetic transformation of the freshwater diatom Cyclotella meneghiniana via bacterial conjugation. Algal Res. 84, 103794 (2024).
-
Sprecher, B. N. et al. Genetic transformation methods for diatom Nitzschia captiva: New tools to better understand dinotom endosymbiosis. Algal Res. 72, 103136 (2023).
-
Maeda, Y., Nakamura, M., Watanabe, K., Okamoto, E. & Tanaka, T. Functional analysis of the putative centromere sequences of marine oleaginous diatom Fistulifera solaris. Algal Res. 74, 103225 (2023).
-
Angstenberger, M., Krischer, J., Aktaş, O. & Büchel, C. Knock-down of a ligIV homologue enables DNA integration via homologous recombination in the marine diatom Phaeodactylum tricornutum. ACS Synth. Biol. 8, 57–69 (2019).
-
Slattery, S. S. et al. Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing. Sci. Rep. 10, 13879 (2020).
-
Moosburner, M. A. et al. Multiplexed knockouts in the model diatom Phaeodactylum by episomal delivery of a selectable Cas9. Front Microbiol 11, 5 (2020).
-
Karas, B. J. et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat. Protoc. 9, 743–750 (2014).
-
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
-
Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 50, D20–D26 (2022).
