Introducing iCatalog as a clinical decision support tool for collaborative pediatric precision oncology studies

introducing-icatalog-as-a-clinical-decision-support-tool-for-collaborative-pediatric-precision-oncology-studies
Introducing iCatalog as a clinical decision support tool for collaborative pediatric precision oncology studies

Data availability

Data and additional supporting information are available in supplemental tables. The source data for Fig. 4A-B is in Supplementary Data 7 and 8, and Fig. 4C is in Supplementary Data 9. The source data for Fig. 5A-B is in Supplementary Data 10, and Fig. 5C is in Supplementary Data 11. Data not included in the supplemental files are available in a prior publication by Church et al.8 or can be provided upon request to Katherine Janeway (katherine_janeway@dfci.harvard.edu).

Code availability

iCatalog was developed through a collaborative effort between the Dana-Farber Cancer Institute (DFCI) and the University of Chicago, with the University of Chicago retaining administrative control over the release of the source code. The codes for the original iCatalog and research versions are hosted in a private Bitbucket repository and available upon request. Interested parties may request access by contacting the co-first author and software developer at the University of Chicago (Wenjun Kang, wkang2@bsd.uchicago.edu) or the corresponding author (Katherine Janeway, katherine_janeway@dfci.harvard.edu).

References

  1. Jiang, W. et al. Tri(c)DB: an integrated platform of knowledgebase and reporting system for cancer precision medicine. J. Transl. Med. 21, 885 (2023).

    Google Scholar 

  2. Yu, Y. et al. PreMedKB: an integrated precision medicine knowledgebase for interpreting relationships between diseases, genes, variants and drugs. Nucleic Acids Res. 47, D1090–D1101 (2019).

    Google Scholar 

  3. Dahary, D. et al. Genome analysis and knowledge-driven variant interpretation with TGex. BMC Med Genomics 12, 200 (2019).

    Google Scholar 

  4. de Bruijn, I. et al. Genome nexus: a comprehensive resource for the annotation and interpretation of genomic variants in cancer. JCO Clin. Cancer Inf. 6, e2100144 (2022).

    Google Scholar 

  5. Borchert, F. et al. Knowledge bases and software support for variant interpretation in precision oncology. Brief Bioinform. https://doi.org/10.1093/bib/bbab134 (2021).

  6. Tamborero, D. et al. The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat. Cancer 3, 251–261 (2022).

    Google Scholar 

  7. Reisle, C. et al. A platform for oncogenomic reporting and interpretation. Nat. Commun. 13, 756 (2022).

    Google Scholar 

  8. Church, A. J. et al. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat. Med. 28, 1581–1589 (2022).

    Google Scholar 

  9. Harris, M. H. et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the individualized cancer therapy (iCat) study. JAMA Oncol. 2, 608–615 (2016).

    Google Scholar 

  10. Kang, W. et al. System for informatics in the molecular pathology laboratory: an open-source end-to-end solution for next-generation sequencing clinical data management. J. Mol. Diagn. 20, 522–532 (2018).

    Google Scholar 

  11. Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. 14, 49–65 (2024).

    Google Scholar 

  12. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. https://doi.org/10.1200/PO.17.00011 (2017).

  13. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Google Scholar 

  14. Tian, Y. et al. REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification. Sci. Rep. 9, 12752 (2019).

    Google Scholar 

  15. Feng, B. J. PERCH: a unified framework for disease gene prioritization. Hum. Mutat. 38, 243–251 (2017).

    Google Scholar 

  16. Hashem, O. et al. An overview of RAF kinases and their inhibitors (2019-2023). Eur. J. Med Chem. 275, 116631 (2024).

    Google Scholar 

  17. Povedano, J. M. et al. TK216 targets microtubules in Ewing sarcoma cells. Cell Chem. Biol. 29, 1325–1332 e4 (2022).

    Google Scholar 

  18. Meyers, P. A. et al. Open-label, multicenter, phase I/II, first-in-human trial of TK216: a first-generation EWS::FLI1 fusion protein antagonist in ewing sarcoma. J. Clin. Oncol. 42, 3725–3734 (2024).

    Google Scholar 

  19. Gazola, A. A., Lautert-Dutra, W., Archangelo, L. F., Reis, R. B. D. & Squire, J. A. Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment. Mol. Cytogenet. 17, 28 (2024).

    Google Scholar 

  20. Nakken, S. et al. Personal cancer genome reporter: variant interpretation report for precision oncology. Bioinformatics 34, 1778–1780 (2018).

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Precision For Kids Pan Mass Challenge Team, the 4 C’s Fund, Lamb Family Fund, C&S Wholesale Grocers, and C&S Charities.

Author information

Author notes

  1. Navin R. Pinto

    Present address: University of Colorado Anschutz Medical Campus, Boulder, CO, USA

  2. These authors contributed equally: Wenjun Kang, Lorena Lazo de la Vega.

Authors and Affiliations

  1. University of Chicago, Chicago, IL, USA

    Wenjun Kang, Mark A. Applebaum, Mengjie Chen, Julie A. Johnson & Samuel Volchenboum

  2. Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA

    Lorena Lazo de la Vega, Hannah Comeau, Ergina Agastra, Ellen Sukharevsky, Evelina Ceca, Laura Corson, Joseph White, Alanna J. Church & Katherine A. Janeway

  3. Broad Institute of MIT and Harvard, Cambridge, MA, USA

    Lorena Lazo de la Vega, Ellen Sukharevsky, Evelina Ceca, Alanna J. Church & Katherine A. Janeway

  4. Primary Children’s Hospital, Salt Lake City, UT, USA

    Luke D. Maese

  5. University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA

    Luke D. Maese

  6. Children’s National Hospital, Washington, DC, USA

    AeRang Kim

  7. George Washington University School of Medicine and Health Sciences, Washington, DC, USA

    AeRang Kim

  8. Children’s Hospital at Montefiore, Bronx, NY, USA

    Daniel A. Weiser

  9. Albert Einstein College of Medicine, Bronx, NY, USA

    Daniel A. Weiser

  10. Comer Children’s Hospital, Chicago, IL, USA

    Mark A. Applebaum

  11. Nationwide Children’s Hospital, Columbus, OH, USA

    Susan I. Colace

  12. Ohio State University College of Medicine, Columbus, OH, USA

    Susan I. Colace

  13. Seattle Children’s Hospital, Seattle, WA, USA

    Navin R. Pinto

  14. University of Washington, Seattle, WA, USA

    Navin R. Pinto

  15. Harvard Medical School, Boston, MA, USA

    Alanna J. Church & Katherine A. Janeway

Authors

  1. Wenjun Kang
  2. Lorena Lazo de la Vega
  3. Hannah Comeau
  4. Ergina Agastra
  5. Luke D. Maese
  6. AeRang Kim
  7. Ellen Sukharevsky
  8. Evelina Ceca
  9. Laura Corson
  10. Joseph White
  11. Daniel A. Weiser
  12. Mark A. Applebaum
  13. Susan I. Colace
  14. Mengjie Chen
  15. Julie A. Johnson
  16. Samuel Volchenboum
  17. Navin R. Pinto
  18. Alanna J. Church
  19. Katherine A. Janeway

Contributions

W.K.: validation, software development, resources, visualization; L.L.D.L.V.: data curation, writing—original draft, visualization, formal analysis of knowledge base, refinement of user interface; H.C.: resources, visualization, refinement of user interface, project administration; E.A.: data curation, visualization, refinement of user interface; L.D.M.: investigation, data curation; A.K.: investigation, data curation; E.S.: visualization, refinement of user interface; E.C.: resources, supervision, project administration; L.C.: conception, refinement of user interface, data curation; J.W.: resources, refinement of user interface; D.A.W.: investigation, data curation; M.A.A.: investigation, data curation; S.I.C.: investigation, data curation; M.C.: resources, supervision; J.A.J.: resources, supervision; S.V.: conception, funding acquisition; N.R.P.: investigation, data curation, refinement of user interface; A.J.C.: conception; K.A.J.: investigation, conception and refinement of user interface visualization, validation, data curation, funding acquisition; All authors contributed to revisions and approved the final manuscript for publication.

Corresponding author

Correspondence to Katherine A. Janeway.

Ethics declarations

Competing interests

W.K., L.L.D.L.V., H.C., E.A., L.D.M., A.K., E.S., E.C., L.C., J.W., D.A.W., M.A.A., S.I.C., S.V., N.R.P., A.J.C. have no conflicts. M.C. consults for Tellic and Impetus. J.A.J. has received travel support from MDClone to attend scientific meetings. K.A.J. consults for Recordati and receives research funding from AstraZeneca.

Peer review

Peer review information

Communications Medicine thanks Yaqiong Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Lazo de la Vega, L., Comeau, H. et al. Introducing iCatalog as a clinical decision support tool for collaborative pediatric precision oncology studies. Commun Med (2026). https://doi.org/10.1038/s43856-025-01351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43856-025-01351-2