A high-performance hydrogel platform enabling dual anti-miR-21 and TGF-β1 delivery to improve arterial plaque stability and enhance therapeutic angiogenesis outcomes

a-high-performance-hydrogel-platform-enabling-dual-anti-mir-21-and-tgf-β1-delivery-to-improve-arterial-plaque-stability-and-enhance-therapeutic-angiogenesis-outcomes
A high-performance hydrogel platform enabling dual anti-miR-21 and TGF-β1 delivery to improve arterial plaque stability and enhance therapeutic angiogenesis outcomes

References

  1. Li, M., Qian, M., Kyler, K. & Xu, J. Endothelial-vascular smooth muscle cells interactions in atherosclerosis. Front. Cardiovasc. Med. 5, 151 (2018).

    Google Scholar 

  2. Cao, G., Xuan, X., Zhang, R., Hu, J. & Dong, H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med. 8, 760140 (2021).

    Google Scholar 

  3. Bennett, M. R. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc. Res. 41(2), 361–368 (1999).

    Google Scholar 

  4. McVey, D. G. et al. Genetic influence on vascular smooth muscle cell apoptosis. Cell Death Dis. 15(6), 402 (2024).

    Google Scholar 

  5. Dave, T., Ezhilan, J., Vasnawala, H. & Somani, V. Plaque regression and plaque stabilisation in cardiovascular diseases. Indian J. Endocrinol. Metab. 17(6), 983–989 (2013).

    Google Scholar 

  6. Shah, P. K. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 41(4, supplement), S15–S22 (2003).

    Google Scholar 

  7. Low, E. L., Baker, A. H. & Bradshaw, A. C. TGFβ, smooth muscle cells and coronary artery disease: A review. Cell. Signal. 53, 90–101 (2019).

    Google Scholar 

  8. Ferrari, G., Cook, B. D., Terushkin, V., Pintucci, G. & Mignatti, P. Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J. Cell. Physiol. 219(2), 449–458 (2009).

    Google Scholar 

  9. Nicoli, S., Knyphausen, C. P., Zhu, L. J., Lakshmanan, A. & Lawson, N. D. miR-221 is required for endothelial tip cell behaviors during vascular development. Dev. Cell. 22(2), 418–429 (2012).

    Google Scholar 

  10. Barwari, T., Rienks, M. & Mayr, M. MicroRNA-21 and the vulnerability of atherosclerotic plaques. Mol. Ther. 26(4), 938–940 (2018).

    Google Scholar 

  11. Khalaji, A. et al. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther. Adv. Cardiovasc. Dis. 18, 17539447241253134 (2024).

    Google Scholar 

  12. Chen, X., Xie, K., Sun, X., Zhang, C. & He, H. The mechanism of miR-21–5p/TSP-1-mediating exercise on the function of endothelial progenitor cells in aged rats. Int. J. Environ. Res. Public Health. 20, 1255 (2023).

    Google Scholar 

  13. Liu, L. Z. et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE 6(4), e19139 (2011).

    Google Scholar 

  14. Ke, X. et al. Endothelial colony-forming cell-derived exosomal miR-21–5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun. Signal. 20, 30 (2022).

    Google Scholar 

  15. Kilari, S. et al. The role of MicroRNA-21 in venous neointimal hyperplasia: Implications for targeting miR-21 for VNH treatment. Mol Ther. 27(9), 1681–1693 (2019).

    Google Scholar 

  16. Schaly, S., Ghebretatios, M. & Prakash, S. Baculoviruses in gene therapy and personalized medicine. Biologics. 15, 115–132 (2021).

    Google Scholar 

  17. Pidre, M. L., Arrías, P. N., Amorós Morales, L. C. & Romanowski, V. The magic staff: A comprehensive overview of baculovirus-based technologies applied to human and animal health. Viruses 15(1), 80 (2022).

    Google Scholar 

  18. Islam, P. et al. Baculovirus expressing tumor growth factor-β1 (TGFβ1) nanoshuttle augments therapeutic effects for vascular wound healing: design and in vitro analysis. ACS Pharmacol. Transl. Sci. 7 (11), 3419–3428 (2024).

    Google Scholar 

  19. Wei, Z. et al. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis. Nat. Commun. 14(1), 8307 (2023).

    Google Scholar 

  20. Yu, Y., Xu, S., Li, S. & Pan, H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: A review. Biomater Sci. 9(5), 1583–1597 (2021).

    Google Scholar 

  21. Mo, Z.-W. et al. High-density lipoprotein regulates angiogenesis by long non-coding RNA HDRACA. Signal Transduct. Target. Ther. 8(1), 299 (2023).

    Google Scholar 

  22. Qi, J., Liu, T., Pan, J., Miao, P. & Zhang, C. Rapid baculovirus titration assay based on viable cell side scatter (SSC). Anal. Chim. Acta 879, 58–62 (2015).

    Google Scholar 

  23. Abosalha AK, Islam P, Boyajian JL, Thareja R, Schaly S, Kassab A, et al. Colon-Targeted Sustained-Release Combinatorial 5-Fluorouracil and Quercetin poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles Show Enhanced Apoptosis and Minimal Tumor Drug Resistance for Their Potential Use in Colon Cancer. ACS Pharmacology & Translational Science. 2024.

  24. Ilkar Erdagi, S., Asabuwa Ngwabebhoh, F. & Yildiz, U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int. J. Biol. Macromol. 149, 651–663 (2020).

    Google Scholar 

  25. Samba, I., Hernandez, R., Rescignano, N., Mijangos, C. & Kenny, J. M. Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites. 1(1), 46–50 (2015).

    Google Scholar 

  26. Yadav, B. et al. RGD-decorated PLGA nanoparticles improved effectiveness and safety of cisplatin for lung cancer therapy. Int. J. Pharm. 633, 122587 (2023).

    Google Scholar 

  27. Chiu, H. I., Samad, N. A., Fang, L. & Lim, V. Cytotoxicity of targeted PLGA nanoparticles: A systematic review. RSC Adv. 11(16), 9433–9449 (2021).

    Google Scholar 

  28. Small, D. A. & Moore, N. F. Measurement of surface charge of baculovirus polyhedra. Appl. Environ. Microbiol. 53(3), 598–602 (1987).

    Google Scholar 

  29. Wang, M. et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler. Thromb. Vasc. Biol. 31(9), 2044–2053 (2011).

    Google Scholar 

  30. Wang, D. & Atanasov, A. G. The microRNAs regulating vascular smooth muscle cell proliferation: A minireview. Int. J. Mol. Sci. 20(2), 324 (2019).

    Google Scholar 

  31. Kang, E. & Kortylewski, M. Lipid nanoparticle-mediated delivery of miRNA mimics to myeloid cells. Methods Mol. Biol. 2691, 337–350 (2023).

    Google Scholar 

  32. Berenjabad, N. J., Nejati, V. & Rezaie, J. Angiogenic ability of human endothelial cells was decreased following senescence induction with hydrogen peroxide: Possible role of vegfr-2/akt-1 signaling pathway. BMC Mol. Cell Biol. 23(1), 31 (2022).

    Google Scholar 

  33. Sabatel C, Malvaux L, Bovy N, Deroanne CF, Lambert V, Gonzalez M-LA, et al. MicroRNA-21 exhibits antiangiogenic function by targeting rhob expression in endothelial cells. Plos One. 2011;6.

  34. Liao, Z. et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 11(1), 268–291 (2021).

    Google Scholar 

  35. Redondo, S., Navarro-Dorado, J., Ramajo, M., Medina, Ú. & Tejerina, T. The complex regulation of TGF-β in cardiovascular disease. Vasc. Health Risk Manag. 8, 533–539 (2012).

    Google Scholar 

  36. Pardali, E., Goumans, M. J. & ten Dijke, P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell. Biol. 20(9), 556–567 (2010).

    Google Scholar 

  37. Goumans, M.-J., Liu, Z. & ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell. Res. 19(1), 116–127 (2009).

    Google Scholar 

  38. Wang, S. & Olson, E. N. AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19(3), 205–211 (2009).

    Google Scholar 

  39. Rodriguez, S. & Huynh-Do, U. The role of PTEN in tumor angiogenesis. J. Oncol. 2012, 141236 (2012).

    Google Scholar 

  40. Jiang, B. H. & Liu, L. Z. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv. Cancer Res. 102, 19–65 (2009).

    Google Scholar 

  41. Alvandi, Z. & Bischoff, J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 41(9), 2357–2369 (2021).

    Google Scholar 

  42. Huang, S. et al. miR-21 regulates vascular smooth muscle cell function in arteriosclerosis obliterans of lower extremities through AKT and ERK1/2 pathways. Arch. Med. Sci. 15(6), 1490–1497 (2019).

    Google Scholar 

  43. Pickett, J. R., Wu, Y., Zacchi, L. F. & Ta, H. T. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: Drug discovery and development of vascular cell adhesion molecule-1–directed novel therapeutics. Cardiovasc. Res. 119(13), 2278–2293 (2023).

    Google Scholar 

  44. Her, A. Y. & Shin, E. S. Current management of in-stent restenosis. Korean Circ. J. 48(5), 337–349 (2018).

    Google Scholar 

  45. Buccheri, D., Piraino, D., Andolina, G. & Cortese, B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 8(10), E1150–E1162 (2016).

    Google Scholar 

  46. Méndez-Barbero N, Gutiérrez-Muñoz C, Blanco-Colio LM. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int. J. Mol. Sci. 2021; 22(14).

Download references