Antibacterial, antibiofilm, and metabolomic profiling of the novel freshwater fungi Longipedicellata megafusiformis and Wicklowia fusiformispora

antibacterial,-antibiofilm,-and-metabolomic-profiling-of-the-novel-freshwater-fungi-longipedicellata-megafusiformis-and-wicklowia-fusiformispora
Antibacterial, antibiofilm, and metabolomic profiling of the novel freshwater fungi Longipedicellata megafusiformis and Wicklowia fusiformispora

References

  1. El-Elimat, T. et al. Freshwater fungi as a source of chemical diversity: A review. J. Nat. Prod. 84, 464–488 (2021).

    Google Scholar 

  2. Tsui, C. K. M., Hyde, K. D. & Hodgkiss, I. J. Biodiversity of fungi on submerged wood in freshwater streams. Biodivers. Conserv. 10, 215–228 (2001).

    Google Scholar 

  3. Shearer, C. A. et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 16, 49–67 (2007).

    Google Scholar 

  4. Goh, T. K. & Hyde, K. D. Biodiversity of freshwater fungi. J. Ind. Microbiol. Biotechnol. 17, 328–345 (1996).

    Google Scholar 

  5. Gönczöl, J. & Révay, Á. Aquatic hyphomycetes and other water-borne fungi in Hungary. Czech Mycol. 63, 133–151 (2011).

    Google Scholar 

  6. Roy, A., Ahuja, S. & Garg, S. Fungal secondary metabolites: Biological activity and potential applications. Recent. Trends Mycol. Res. 1, 159–188 (2021).

    Google Scholar 

  7. Shankar, A. et al. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl. Microbiol. Biotechnol. 106, 3465–3488 (2022).

    Google Scholar 

  8. Bills, G. F. & Gloer, J. B. Biologically active secondary metabolites from the fungi. Microbiol. Spectr. 4, 101128 (2016).

    Google Scholar 

  9. Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    Google Scholar 

  10. Rateb, M. E. & Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 28, 290–344 (2011).

    Google Scholar 

  11. Almutairi, F. A. & Edrada-Ebel, R. A. Fungal metabolites: A promising source for anti-biofilm compounds. In Antibiofilm Strategies: From Novel Drugs to Alternative Therapies (eds. Donelli, G.). 1–28 (Springer, 2020).

  12. Martínez, L. R. & Fries, B. C. Fungal biofilms: Relevance in the setting of human disease. Curr. Fungal Infect. Rep. 4, 266–275 (2010).

    Google Scholar 

  13. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Google Scholar 

  14. Kırmusaoğlu, S. Biofilm and screening antibiofilm activity of agents. Antimicrobials, antibiotic resistance. Antibiofilm Strateg. Activ. Methods 99 (2019).

  15. Ventola, C. L. The antibiotic resistance crisis: Causes and threats. P T. 40, 277–283 (2015).

    Google Scholar 

  16. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Google Scholar 

  17. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance (2016).

  18. Alves, V., Zamith-Miranda, D., Frases, S. & Nosanchuk, J. D. Fungal metabolomics: A comprehensive approach to understanding pathogenesis in humans and identifying potential therapeutics. J. Fungi. 11, 93 (2025).

    Google Scholar 

  19. Wolfender, J. L., Nuzillard, J. M., van der Hooft, J. J. J., Renault, J. H. & Bertrand, S. Accelerating metabolite identification in natural product research: Toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem. 91, 704–742 (2018).

    Google Scholar 

  20. Hoffmann, T., Krug, D., Hüttel, S. & Müller, R. Improving natural products identification through targeted LC–MS/MS in an untargeted secondary metabolomics workflow. Anal. Chem. 86, 10780–10788 (2014).

    Google Scholar 

  21. Boonmee, S. et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 111, 1–335 (2021).

    Google Scholar 

  22. Krauss, G. J. et al. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 35, 620–651 (2011).

    Google Scholar 

  23. Kırmusaoğlu, S. Biofilm and screening antibiofilm activity of agents. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. 99 (2019).

  24. Divya, K. S., Murthy, S. M. & Jogaiah, S. Ecological studies of fungal biodiversity in freshwater and their broad-spectrum applications. In Biocontrol Agents and Secondary Metabolites. 631–648 (Woodhead Publishing, 2021).

  25. Hu, D., Cai, L., Chen, H., Bahkali, A. H. & Hyde, K. D. Fungal diversity on submerged wood in a tropical stream and an artificial lake. Biodivers. Conserv. 19, 3799–3808 (2010).

    Google Scholar 

  26. Kodsueb, R., Lumyong, S., McKenzie, E. H. C., Bahkali, A. H. & Hyde, K. D. Relationships between terrestrial and freshwater lignicolous fungi. Fungal Ecol. 19, 155–168 (2016).

    Google Scholar 

  27. Aly, A. H., Debbab, A. & Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol. 90, 1829–1845 (2011).

    Google Scholar 

  28. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew Chem. Int. Ed. 48, 4688–4716 (2009).

    Google Scholar 

  29. Jiang, T., Zhang, P., Chen, S. & Li, G. Marine natural products and their synthetic derivatives for cancer therapy. In Alternative and Complementary Therapies for Cancer: Integrative Approaches and Discovery of Conventional Drugs (eds Jiang, T. & Li, G.). 613–643 (Springer, 2010).

    Google Scholar 

  30. Carroll, A. R. et al. Marine natural products highlight polyketide and alkaloid diversity with antimicrobial potential. Nat. Prod. Rep. 37, 175–223 (2020).

    Google Scholar 

  31. Brakhage, A. A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32 (2013).

    Google Scholar 

  32. Lim, F. Y. & Keller, N. P. Spatial and temporal control of fungal natural product synthesis. Nat. Prod. Rep. 31, 1277–1286 (2014).

    Google Scholar 

  33. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Google Scholar 

  34. Ciofu, O., Rojo-Molinero, E., Macià, M. D. & Oliver, A. Antibiotic treatment of biofilm infections. APMIS 125, 304–319 (2017).

    Google Scholar 

  35. Gilbert, P., McBain, A. J. & Rickard, A. H. Formation of microbial biofilm in hygienic situations: A problem of control. Int. Biodeterior. Biodegrad. 51, 245–248 (2003).

    Google Scholar 

  36. Brackman, G. & Coenye, T. Quorum sensing inhibitors as antibiofilm agents. Curr. Pharm. Des. 21, 5–11 (2015).

    Google Scholar 

  37. Blackwell, H. E. & Fuqua, C. Introduction to bacterial signals and chemical communication. Chem. Rev. 111, 1–3 (2011).

    Google Scholar 

  38. Sparg, S. G., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243 (2004).

    Google Scholar 

  39. Zhou, K. et al. Natural phytochemical-based strategies for antibiofilm applications. Chin. Med. 20, 96 (2025).

    Google Scholar 

  40. Vurro, M., Boari, A., Evidente, A. Andolfi, A. & Zermane, N. Natural metabolites for parasitic weed management. Pest Manag. Sci. 65, 566–571 (2009).

  41. Masalha, M., Rayan, M., Adawi, A., Abdallah, Z. & Rayan, A. Antimicrobial activity of glucosinolate-derived isothiocyanates from cruciferous vegetables. Foods 7, 93 (2018).

    Google Scholar 

  42. Pearce, A. N. et al. Distomadine B, a quinoline alkaloid with antimicrobial activity from marine sponges. J. Nat. Prod. 66, 112–115 (2003).

    Google Scholar 

  43. Prinsep, M. R. Agelasidines and agelasines: Antimicrobial diterpenoids from marine sponges. Nat. Prod. Rep. 20, 79–91 (2003).

    Google Scholar 

  44. Kwon, Y. et al. Antimicrobial and cytotoxic cyclic peptides of the Phakellistatin family from marine sponges. Mar. Drugs. 16, 325 (2018).

    Google Scholar 

  45. Arihara, S. et al. Sugikurojins A–C, antimicrobial polyketides from Polyporus spp. Chem. Pharm. Bull. 52, 815–817 (2004).

    Google Scholar 

  46. Lim, S. H. et al. Prenylated isoflavonoids with antibacterial properties from Erythrina spp. J. Nat. Prod. 84, 1450–1458 (2021).

    Google Scholar 

  47. Chen, X. et al. Septacidin-type metabolites with antibacterial activity from actinomycetes. Front. Microbiol. 13, 943211 (2022).

    Google Scholar 

  48. Raveh, A. & Carmeli, S. Antimicrobial ambiguines and isonitrile alkaloids from cyanobacteria. J. Nat. Prod. 70, 196–201 (2007).

    Google Scholar 

  49. Yan, H. et al. Hovenia-derived flavonoids with antibacterial potential. Molecules 27, 1593 (2022).

    Google Scholar 

  50. Ruiu, L. et al. Bachitrocin C, an antibacterial metabolite from marine bacteria. Mar. Drugs. 11, 2300–2311 (2013).

    Google Scholar 

  51. Rehman, S. U. et al. In-vitro antimicrobial analysis of aqueous methanolic extracts and crude saponins isolated from leaves and roots of Sarcococca Saligna. Pak J. Agric. Res. 32, 268–274 (2019).

    Google Scholar 

  52. Soni, S. et al. Spirilloxanthin and related carotenoids inhibit Staphylococcus aureus biofilms. Biofouling 41, 32–44 (2025).

    Google Scholar 

  53. Abd Ghafar, S. Z. et al. Identification of metabolites from Halamphora sp. and their correlation with quorum-sensing inhibitory activity via UHPLC–ESI–MS/MS-based metabolomics and molecular networking. Chem. Biodivers. 22, e202402282 (2025).

    Google Scholar 

  54. Bisht, G. et al. Applications of red pigments from the psychrophilic Rhodonellum psychrophilum GL8 in health, food and antimicrobial finishes on textiles. Process. Biochem. 94, 15–29 (2020).

    Google Scholar 

  55. Júnior, A. C. V. et al. Antibiofilm and anti-candidal activities of the extract of the marine sponge Agelas dispar. Mycopathologia 186, 819–832 (2021).

    Google Scholar 

  56. Tenea, G. N. et al. Exometabolite-based antimicrobial formulations from lactic acid bacteria as a multi-target strategy against multidrug-resistant Escherichia coli. Antibiotics 14, 851 (2025).

    Google Scholar 

  57. Nishinarizki, R. et al. Spiroleucidine-type metabolites with anti-biofilm activity. BMC Complement. Med. Ther. 23, 215 (2023).

    Google Scholar 

  58. Shah, R. et al. Nodulisporic acid family metabolites affect quorum sensing and oxidative stress responses. Mycology 16, 77–90 (2025).

    Google Scholar 

  59. Duan, X. et al. Betaine as an antimicrobial and protein anti-adhesion molecule. Food Chem. 330, 127267 (2020).

    Google Scholar 

  60. Jamison, M. T. et al. Bengamides: Potent antibacterial natural products. J. Med. Chem. 62, 12162–12174 (2019).

    Google Scholar 

  61. Correa-Barbosa, J. et al. Aspidocarpine-type alkaloids: Antimicrobial evaluation and Docking analysis. J. Biomol. Struct. Dyn. 43, 1121–1132 (2025).

    Google Scholar 

  62. Gould, S. J. & Cone, M. A. Cyanocycline B: An antimicrobial alkaloid from Streptomyces. J. Antibiot. 46, 999–1006 (1993).

    Google Scholar 

  63. Reddy, P. et al. Jantithrem G, an antimicrobial tremorgenic metabolite. Tetrahedron 75, 130482 (2019).

    Google Scholar 

  64. Dikmen, M. et al. Chrysosporide: Antimicrobial metabolites from basidiomycetes. J. Antibiot. 73, 489–497 (2020).

    Google Scholar 

  65. Kunze, B. et al. Ajudazol A: Respiratory chain inhibitor with antibacterial activity. J. Antibiot. 57, 201–207 (2004).

    Google Scholar 

  66. Tammam, M. A. et al. Plakinamine F: Marine steroidal alkaloid with antimicrobial properties. Mar. Drugs. 23, 118 (2025).

    Google Scholar 

  67. Manjal, S. K. et al. Calycinathine: An antimicrobial pyrrolidone derivative from plants. Nat. Prod. Commun. 15, 1934578 (2020).

    Google Scholar 

  68. Ikeda, Y. et al. Triedimycins: Triene β-lactone antibiotics from actinomycetes. J. Antibiot. 44, 1047–1054 (1991).

    Google Scholar 

  69. Prajapati, N. D. & Jaiswal, Y. Basellasaponin A: Biological evaluation of triterpenoid saponins. Indian J. Nat. Prod. Resour. 5, 45–52 (2014).

    Google Scholar 

  70. Jurek, J., Scheuer, P. J. & Kelly-Borges, M. Lokysterolamine A: A marine steroidal alkaloid with antimicrobial activity. J. Nat. Prod. 57, 1040–1045 (1994).

    Google Scholar 

  71. Matulja, D. et al. Granulatamides from Gorgonian corals with antibacterial activity. Mar. Drugs. 17, 510 (2019).

    Google Scholar 

  72. Ha, T. M. et al. Epipachysamines: Antimicrobial alkaloids from fungal sources. J. Antibiot. 78, 55–63 (2025).

    Google Scholar 

  73. Abdullah, S. & Gobilik, J. Antifungal phytochemical compounds of Cynodon dactylon and their effects on Ganoderma boninense. Am. -Eurasian J. Sustain. Agric. 8, 22–28 (2014).

    Google Scholar 

  74. Khruengsai, S., Sripahco, T., Kittakoop, P. & Pripdeevech, P. Secondary metabolites of Minutisphaera thailandensis and Hongkongmyces kokensis revealed by LC–QTOF–MS and their antimicrobial and cytotoxic activities. Sci. Rep. 15, 41213 (2025).

    Google Scholar 

Download references