A functional and robust cellular model for high-throughput screening of piezo1 modulators

a-functional-and-robust-cellular-model-for-high-throughput-screening-of-piezo1-modulators
A functional and robust cellular model for high-throughput screening of piezo1 modulators

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576. https://doi.org/10.1038/s41586-020-2933-1 (2020).

    Google Scholar 

  2. Jiang, Y., Yang, X., Jiang, J. & Xiao, B. Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. Trends Biochem. Sci. 46, 472–488. https://doi.org/10.1016/j.tibs.2021.01.008 (2021).

    Google Scholar 

  3. McGrane, A. et al. PIEZO force sensors and the heart. Cold Spring Harb Perspect. Biol. https://doi.org/10.1101/cshperspect.a041806 (2025).

    Google Scholar 

  4. Xiao, B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat. Rev. Mol. Cell. Biol. 25, 886–903. https://doi.org/10.1038/s41580-024-00773-5 (2024).

    Google Scholar 

  5. Mulhall, E. M. et al. Direct observation of the conformational States of PIEZO1. Nature 620, 1117–1125. https://doi.org/10.1038/s41586-023-06427-4 (2023).

    Google Scholar 

  6. Syeda, R. Physiology and pathophysiology of mechanically activated PIEZO channels. Annu. Rev. Neurosci. 44, 383–402. https://doi.org/10.1146/annurev-neuro-093020-120939 (2021).

    Google Scholar 

  7. Du, J. et al. The mechanosensory channel PIEZO1 functions upstream of angiopoietin/TIE/FOXO1 signaling in lymphatic development. J. Clin. Investig. 134 https://doi.org/10.1172/jci176577 (2024).

  8. Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282. https://doi.org/10.1038/s41467-019-14146-6 (2020).

    Google Scholar 

  9. Li, Y. et al. Dynamics of endothelial cell generation and turnover in arteries during homeostasis and diseases. Circulation 149, 135–154. https://doi.org/10.1161/circulationaha.123.064301 (2024).

    Google Scholar 

  10. He, X. et al. Yoda1 pretreated BMSC derived exosomes accelerate osteogenesis by activating phospho-ErK signaling via Yoda1-mediated signal transmission. J. Nanobiotechnol. 22, 407. https://doi.org/10.1186/s12951-024-02669-0 (2024).

    Google Scholar 

  11. Xiao, B. Levering mechanically activated piezo channels for potential Pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 60, 195–218. https://doi.org/10.1146/annurev-pharmtox-010919-023703 (2020).

    Google Scholar 

  12. Carrisoza-Gaytan, R. et al. PIEZO1 is a distal nephron mechanosensor and is required for flow-induced K + secretion. J. Clin. Investig. 134 https://doi.org/10.1172/jci174806 (2024).

  13. Neuberger, A., Nadezhdin, K. D. & Sobolevsky, A. I. Structural mechanisms of TRPV6 Inhibition by ruthenium red and econazole. Nat. Commun. 12, 6284. https://doi.org/10.1038/s41467-021-26608-x (2021).

    Google Scholar 

  14. Parsonage, G. et al. Improved PIEZO1 agonism through 4-benzoic acid modification of Yoda1. Br. J. Pharmacol. 180, 2039–2063. https://doi.org/10.1111/bph.15996 (2023).

    Google Scholar 

  15. Endesh, N. et al. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int. 43, 2026–2038. https://doi.org/10.1111/liv.15646 (2023).

    Google Scholar 

  16. Tang, H. et al. Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators. J. Med. Chem. 65, 6441–6453. https://doi.org/10.1021/acs.jmedchem.2c00085 (2022).

    Google Scholar 

  17. Murciano, N. et al. A high-throughput electrophysiology assay to study the response of PIEZO1 to mechanical stimulation. J. Gen. Physiol. 155 https://doi.org/10.1085/jgp.202213132 (2023).

  18. Zheng, K. et al. Establishing an ANO1-based cell model for high-throughput screening targeting TRPV4 regulators. Molecules (Basel Switzerland). 29 https://doi.org/10.3390/molecules29051036 (2024).

  19. Liu, X. et al. Establishment of a CaCC-based cell model and method for high-throughput screening of M3 receptor drugs. Cell. Biochem. Biophys. 81, 49–58. https://doi.org/10.1007/s12013-022-01119-8 (2023).

    Google Scholar 

  20. Conti, A., Strazzeri, C. & Rhoden, K. J. Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro. Mol. Cell. Endocrinol. 515, 110922. https://doi.org/10.1016/j.mce.2020.110922 (2020).

    Google Scholar 

  21. Wang, S. et al. Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 140, 171–183. https://doi.org/10.1182/blood.2021014614 (2022).

    Google Scholar 

  22. Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 4 (2015). https://doi.org/10.7554/eLife.07369

  23. Wang, Y. et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 9, 1300. https://doi.org/10.1038/s41467-018-03570-9 (2018).

    Google Scholar 

  24. Gomis, A., Gutierrez, L. M., Sala, F., Viniegra, S. & Reig, J. A. Ruthenium red inhibits selectively chromaffin cell calcium channels. Biochem. Pharmacol. 47, 225–231. https://doi.org/10.1016/0006-2952(94)90010-8 (1994).

    Google Scholar 

  25. Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598. https://doi.org/10.1085/jgp.115.5.583 (2000).

    Google Scholar 

  26. Wu, M. et al. Establishment of a cell model for dynamic monitoring of intracellular calcium concentration and High-Throughput screening of P2Y2 regulators. Molecules (Basel Switzerland). 27. https://doi.org/10.3390/molecules27093003 (2022).

  27. Liu, T. T. et al. Piezo1-Mediated Ca(2+) activities regulate brain vascular pathfinding during development. Neuron 108, 180–192e185. https://doi.org/10.1016/j.neuron.2020.07.025 (2020).

    Google Scholar 

  28. Mukhopadhyay, A. et al. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 57, 52–67e10. https://doi.org/10.1016/j.immuni.2023.11.007 (2024).

    Google Scholar 

  29. Genovese, M. et al. Analysis of inhibitors of the anoctamin-1 chloride channel (transmembrane member 16A, TMEM16A) reveals indirect mechanisms involving alterations in calcium signalling. Br. J. Pharmacol. 180, 775–785. https://doi.org/10.1111/bph.15995 (2023).

    Google Scholar 

  30. Maul, A. et al. The Cl(-)-channel TMEM16A is involved in the generation of cochlear Ca(2+) waves and promotes the refinement of auditory brainstem networks in mice. eLife 11 https://doi.org/10.7554/eLife.72251 (2022).

  31. Yang, H. et al. Nanomolar affinity small molecule correctors of defective delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085. https://doi.org/10.1074/jbc.M303098200 (2003).

    Google Scholar 

  32. Galietta, L. J., Haggie, P. M. & Verkman, A. S. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224. https://doi.org/10.1016/s0014-5793(01)02561-3 (2001).

    Google Scholar 

  33. Yang, H. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111–122. https://doi.org/10.1016/j.cell.2012.07.036 (2012).

    Google Scholar 

  34. Galietta, L. V., Jayaraman, S. & Verkman, A. S. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell. Physiol. 281, C1734–1742. https://doi.org/10.1152/ajpcell.2001.281.5.C1734 (2001).

    Google Scholar 

  35. Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891. https://doi.org/10.1038/s41586-023-05828-9 (2023).

    Google Scholar 

  36. Perdreau-Dahl, H. et al. BIN1, Myotubularin, and Dynamin-2 coordinate T-Tubule growth in cardiomyocytes. Circul. Res. 132, e188–e205. https://doi.org/10.1161/circresaha.122.321732 (2023).

    Google Scholar 

  37. Tao, L. et al. Capsaicin receptor TRPV1 maintains quiescence of hepatic stellate cells in the liver via recruitment of SARM1. J. Hepatol. 78, 805–819. https://doi.org/10.1016/j.jhep.2022.12.031 (2023).

    Google Scholar 

  38. Lin, C. W. & Lerner, R. A. Antibody libraries as tools to discover functional antibodies and receptor pleiotropism. Int. J. Mol. Sci. 22, 4123. https://doi.org/10.3390/ijms22084123 (2021).

    Google Scholar 

  39. Wu, D., Gordon, C. K. L., Shin, J. H., Eisenstein, M. & Soh, H. T. Directed evolution of aptamer discovery technologies. Acc. Chem. Res. 55, 685–695. https://doi.org/10.1021/acs.accounts.1c00724 (2022).

    Google Scholar 

  40. Trivedi, J., Yasir, M., Maurya, R. K. & Tripathi, A. S. Aptamer-based theranostics in oncology: design strategies and limitations. BIO Integr. 5 https://doi.org/10.15212/bioi-2024-0002 (2024).

  41. Rebbeck, R. T. et al. RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca(2+) assays. Sci. Rep. 10, 1791. https://doi.org/10.1038/s41598-020-58461-1 (2020).

    Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (81173109), Scientific and Technological Planning Project of Jilin Province (YDZJ202401007ZYTS), Education Department of Jilin Province (JJKH20240596KJ), Graduate Innovation Program of Jilin Medical University (2023zyc04), “Meikang Shengde” Student Research and Innovation Fund (2023JYMKZ002) and Jilin Medical University 2024 College Students’ Innovation and Entrepreneurship Training Program (S202413706007).

Author information

Author notes

  1. Xueying Liu, Kai Zheng, Kai Qin, Feng Hao and Wei Zhou contributed equally to this work.

Authors and Affiliations

  1. College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China

    Xueying Liu, Kai Zheng, Yanyan Wang, Liu Yang, Cheng Hu, Haojian Han & Feng Hao

  2. Jingdong Medical District, Chinese PLA General Hospital, Beijing, 101199, China

    Xueying Liu

  3. College of Pharmacy, Jilin Medical University, Jilin, 132013, China

    Shuang Chen

  4. Urology Department, Affiliated Hospital of Jilin Medical University, Jilin, 132013, China

    Wansheng Zhang

  5. Jilin Changyuan Pharmaceutical Co, Changchun, 130103, China

    Kai Qin & Wei Zhou

Authors

  1. Xueying Liu
  2. Kai Zheng
  3. Yanyan Wang
  4. Liu Yang
  5. Shuang Chen
  6. Cheng Hu
  7. Haojian Han
  8. Wansheng Zhang
  9. Kai Qin
  10. Feng Hao
  11. Wei Zhou

Contributions

Conceptualization, X.L. and K.Z.; methodology, X.L.; software, Y.W; validation, L.Y., C.H., H.H. and W.Z.; formal analysis, X.L.; investigation, S.C.; resources, X.L.; data curation, X.L. and K.Z.; writing—original draft preparation, X.L.; writing—review and editing, K.Z.; visualization, Y.W.; supervision, F.H.; project administration, K.Q. and W.Z.; funding acquisition, W.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kai Qin, Feng Hao or Wei Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zheng, K., Wang, Y. et al. A functional and robust cellular model for high-throughput screening of piezo1 modulators. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-35673-5

Keywords