Data availability
All data generated or analysed during this study are included in this published article and its supplementary information files.
References
-
Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576. https://doi.org/10.1038/s41586-020-2933-1 (2020).
-
Jiang, Y., Yang, X., Jiang, J. & Xiao, B. Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. Trends Biochem. Sci. 46, 472–488. https://doi.org/10.1016/j.tibs.2021.01.008 (2021).
-
McGrane, A. et al. PIEZO force sensors and the heart. Cold Spring Harb Perspect. Biol. https://doi.org/10.1101/cshperspect.a041806 (2025).
-
Xiao, B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat. Rev. Mol. Cell. Biol. 25, 886–903. https://doi.org/10.1038/s41580-024-00773-5 (2024).
-
Mulhall, E. M. et al. Direct observation of the conformational States of PIEZO1. Nature 620, 1117–1125. https://doi.org/10.1038/s41586-023-06427-4 (2023).
-
Syeda, R. Physiology and pathophysiology of mechanically activated PIEZO channels. Annu. Rev. Neurosci. 44, 383–402. https://doi.org/10.1146/annurev-neuro-093020-120939 (2021).
-
Du, J. et al. The mechanosensory channel PIEZO1 functions upstream of angiopoietin/TIE/FOXO1 signaling in lymphatic development. J. Clin. Investig. 134 https://doi.org/10.1172/jci176577 (2024).
-
Wang, L. et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11, 282. https://doi.org/10.1038/s41467-019-14146-6 (2020).
-
Li, Y. et al. Dynamics of endothelial cell generation and turnover in arteries during homeostasis and diseases. Circulation 149, 135–154. https://doi.org/10.1161/circulationaha.123.064301 (2024).
-
He, X. et al. Yoda1 pretreated BMSC derived exosomes accelerate osteogenesis by activating phospho-ErK signaling via Yoda1-mediated signal transmission. J. Nanobiotechnol. 22, 407. https://doi.org/10.1186/s12951-024-02669-0 (2024).
-
Xiao, B. Levering mechanically activated piezo channels for potential Pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 60, 195–218. https://doi.org/10.1146/annurev-pharmtox-010919-023703 (2020).
-
Carrisoza-Gaytan, R. et al. PIEZO1 is a distal nephron mechanosensor and is required for flow-induced K + secretion. J. Clin. Investig. 134 https://doi.org/10.1172/jci174806 (2024).
-
Neuberger, A., Nadezhdin, K. D. & Sobolevsky, A. I. Structural mechanisms of TRPV6 Inhibition by ruthenium red and econazole. Nat. Commun. 12, 6284. https://doi.org/10.1038/s41467-021-26608-x (2021).
-
Parsonage, G. et al. Improved PIEZO1 agonism through 4-benzoic acid modification of Yoda1. Br. J. Pharmacol. 180, 2039–2063. https://doi.org/10.1111/bph.15996 (2023).
-
Endesh, N. et al. Independent endothelial functions of PIEZO1 and TRPV4 in hepatic portal vein and predominance of PIEZO1 in mechanical and osmotic stress. Liver Int. 43, 2026–2038. https://doi.org/10.1111/liv.15646 (2023).
-
Tang, H. et al. Piezo-type mechanosensitive ion channel component 1 (Piezo1): a promising therapeutic target and its modulators. J. Med. Chem. 65, 6441–6453. https://doi.org/10.1021/acs.jmedchem.2c00085 (2022).
-
Murciano, N. et al. A high-throughput electrophysiology assay to study the response of PIEZO1 to mechanical stimulation. J. Gen. Physiol. 155 https://doi.org/10.1085/jgp.202213132 (2023).
-
Zheng, K. et al. Establishing an ANO1-based cell model for high-throughput screening targeting TRPV4 regulators. Molecules (Basel Switzerland). 29 https://doi.org/10.3390/molecules29051036 (2024).
-
Liu, X. et al. Establishment of a CaCC-based cell model and method for high-throughput screening of M3 receptor drugs. Cell. Biochem. Biophys. 81, 49–58. https://doi.org/10.1007/s12013-022-01119-8 (2023).
-
Conti, A., Strazzeri, C. & Rhoden, K. J. Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro. Mol. Cell. Endocrinol. 515, 110922. https://doi.org/10.1016/j.mce.2020.110922 (2020).
-
Wang, S. et al. Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 140, 171–183. https://doi.org/10.1182/blood.2021014614 (2022).
-
Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 4 (2015). https://doi.org/10.7554/eLife.07369
-
Wang, Y. et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 9, 1300. https://doi.org/10.1038/s41467-018-03570-9 (2018).
-
Gomis, A., Gutierrez, L. M., Sala, F., Viniegra, S. & Reig, J. A. Ruthenium red inhibits selectively chromaffin cell calcium channels. Biochem. Pharmacol. 47, 225–231. https://doi.org/10.1016/0006-2952(94)90010-8 (1994).
-
Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol. 115, 583–598. https://doi.org/10.1085/jgp.115.5.583 (2000).
-
Wu, M. et al. Establishment of a cell model for dynamic monitoring of intracellular calcium concentration and High-Throughput screening of P2Y2 regulators. Molecules (Basel Switzerland). 27. https://doi.org/10.3390/molecules27093003 (2022).
-
Liu, T. T. et al. Piezo1-Mediated Ca(2+) activities regulate brain vascular pathfinding during development. Neuron 108, 180–192e185. https://doi.org/10.1016/j.neuron.2020.07.025 (2020).
-
Mukhopadhyay, A. et al. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 57, 52–67e10. https://doi.org/10.1016/j.immuni.2023.11.007 (2024).
-
Genovese, M. et al. Analysis of inhibitors of the anoctamin-1 chloride channel (transmembrane member 16A, TMEM16A) reveals indirect mechanisms involving alterations in calcium signalling. Br. J. Pharmacol. 180, 775–785. https://doi.org/10.1111/bph.15995 (2023).
-
Maul, A. et al. The Cl(-)-channel TMEM16A is involved in the generation of cochlear Ca(2+) waves and promotes the refinement of auditory brainstem networks in mice. eLife 11 https://doi.org/10.7554/eLife.72251 (2022).
-
Yang, H. et al. Nanomolar affinity small molecule correctors of defective delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085. https://doi.org/10.1074/jbc.M303098200 (2003).
-
Galietta, L. J., Haggie, P. M. & Verkman, A. S. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224. https://doi.org/10.1016/s0014-5793(01)02561-3 (2001).
-
Yang, H. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151, 111–122. https://doi.org/10.1016/j.cell.2012.07.036 (2012).
-
Galietta, L. V., Jayaraman, S. & Verkman, A. S. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell. Physiol. 281, C1734–1742. https://doi.org/10.1152/ajpcell.2001.281.5.C1734 (2001).
-
Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891. https://doi.org/10.1038/s41586-023-05828-9 (2023).
-
Perdreau-Dahl, H. et al. BIN1, Myotubularin, and Dynamin-2 coordinate T-Tubule growth in cardiomyocytes. Circul. Res. 132, e188–e205. https://doi.org/10.1161/circresaha.122.321732 (2023).
-
Tao, L. et al. Capsaicin receptor TRPV1 maintains quiescence of hepatic stellate cells in the liver via recruitment of SARM1. J. Hepatol. 78, 805–819. https://doi.org/10.1016/j.jhep.2022.12.031 (2023).
-
Lin, C. W. & Lerner, R. A. Antibody libraries as tools to discover functional antibodies and receptor pleiotropism. Int. J. Mol. Sci. 22, 4123. https://doi.org/10.3390/ijms22084123 (2021).
-
Wu, D., Gordon, C. K. L., Shin, J. H., Eisenstein, M. & Soh, H. T. Directed evolution of aptamer discovery technologies. Acc. Chem. Res. 55, 685–695. https://doi.org/10.1021/acs.accounts.1c00724 (2022).
-
Trivedi, J., Yasir, M., Maurya, R. K. & Tripathi, A. S. Aptamer-based theranostics in oncology: design strategies and limitations. BIO Integr. 5 https://doi.org/10.15212/bioi-2024-0002 (2024).
-
Rebbeck, R. T. et al. RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca(2+) assays. Sci. Rep. 10, 1791. https://doi.org/10.1038/s41598-020-58461-1 (2020).
Funding
This research was funded by the National Natural Science Foundation of China (81173109), Scientific and Technological Planning Project of Jilin Province (YDZJ202401007ZYTS), Education Department of Jilin Province (JJKH20240596KJ), Graduate Innovation Program of Jilin Medical University (2023zyc04), “Meikang Shengde” Student Research and Innovation Fund (2023JYMKZ002) and Jilin Medical University 2024 College Students’ Innovation and Entrepreneurship Training Program (S202413706007).
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Liu, X., Zheng, K., Wang, Y. et al. A functional and robust cellular model for high-throughput screening of piezo1 modulators. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35673-5
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41598-026-35673-5
