Integrated safety and microbiota profiling of fulvic acid formulations across in vitro and in vivo models

integrated-safety-and-microbiota-profiling-of-fulvic-acid-formulations-across-in-vitro-and-in-vivo-models
Integrated safety and microbiota profiling of fulvic acid formulations across in vitro and in vivo models

References

  1. Volikov, A. B. et al. Directed synthesis of humic and fulvic derivatives with enhanced antioxidant properties. Agronomy 11(10), 1–16 (2021).

  2. Kinali, B. et al. Effect of humic acid on oxidative stress and neuroprotection in traumatic spinal cord injury: an experimental study. Turk. J. Med. Sci. 54 (1), 52–58 (2024).

    Google Scholar 

  3. Alkan Ozdemir, S. et al. Effect of humic acid on oxidative stress and neuroprotection in hypoxic-ischemic brain injury: part 1. J. Matern Fetal Neonatal Med. 35 (23), 4580–4589 (2022).

    Google Scholar 

  4. Winkler, J. & Ghosh, S. Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes. J. Diabetes Res. 2018, 5391014 (2018).

    Google Scholar 

  5. Trofimova, E. S. et al. Immunomodulating properties of humic acids extracted from oligotrophic sphagnum Magellanicum peat. Bull. Exp. Biol. Med. 170 (4), 461–465 (2021).

    Google Scholar 

  6. Vetvicka, V. et al. The relative abundance of oxygen alkyl-related groups in aliphatic domains is involved in the main pharmacological-pleiotropic effects of humic acids. J. Med. Food. 16 (7), 625–632 (2013).

    Google Scholar 

  7. Aslantürk, Ö. S., Aşkın Çelik, T. & Sönmez, Y. M. Investigation of antioxidant and in vitro wound healing activity of fulvic acid. J. Inst. Sci. Technol. 9 (3), 1316–1326 (2019).

    Google Scholar 

  8. Gheibi, N., Samiee-Rad, F., Sofiabadi, M., Mosayebi, E. & Shalbaf, Z. The effect of combining humic and fulvic acids poultice on wound healing in male rats. J. Cutan. Aesthet. Surg. 17 (2), 105–111 (2024).

    Google Scholar 

  9. Zolghadr, L., Behbehani, G. R., Pakbin, B., Hosseini, S. A. & Gheibi, N. A new insight into the anti proliferative and apoptotic effects of fulvic and humic acids as bio product of humus on breast cancer cells, optimized by response surface methodology. Waste Biomass Valorization. 14 (3), 859–872 (2023).

    Google Scholar 

  10. van Rensburg, C. E., van Straten, A. & Dekker, J. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J. Antimicrob. Chemother. 46, 853 (2000).

  11. Kishor, M. et al. Humic acid as foliar and soil application improve the growth, yield and quality of coffee (cv. C × R) in Western Ghats of India. J. Sci. Food Agric. 101 (6), 2273–2283 (2021).

    Google Scholar 

  12. Ampong, K., Thilakaranthna, M. S. & Gorim, L. Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 1–14 (2022).

  13. Man-Hong, Y., Lei, Z., Sheng-Tao, X., McLaughlin, N. B. & Jing-Hui, L. Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Sci. Rep. 10 (1), 7854 (2020).

    Google Scholar 

  14. Cusack, P. M. V. Effects of a dietary complex of humic and fulvic acids (FeedMAX 15) on the health and production of feedlot cattle destined for the Australian domestic market. Aust. Vet. J. 86 (1–2), 46–49 (2008).

    Google Scholar 

  15. Feng, P. et al. Effects of fulvic acid on growth performance, serum index, gut microbiota, and metabolites of Xianju yellow chicken. Front. Nutr. 9, 963271 (2022).

    Google Scholar 

  16. Ji, F., McGlone, J. J. & Kim, S. W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J. Anim. Sci. 84 (9), 2482–2490 (2006).

    Google Scholar 

  17. Terry, S. A. et al. Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay—concentrate diet. Front. Microbiol. 9, 1410 (2018).

    Google Scholar 

  18. Trckova, M., Lorencova, A., Babak, V., Neca, J. & Ciganek, M. The effect of leonardite and lignite on the health of weaned piglets. Res. Vet. Sci. 119, 134–142 (2018).

    Google Scholar 

  19. Liu, L. et al. Effects of fulvic acid on broiler performance, blood biochemistry, and intestinal microflora. Poult. Sci. 103 (2), 103273 (2024).

    Google Scholar 

  20. Swat, M., Rybicka, I. & Gliszczyńska-Świgło, A. Characterization of fulvic acid beverages by mineral profile and antioxidant capacity. Foods 8(12), 1–22 (2019).

  21. Aeschbacher, M., Graf, C., Schwarzenbach, R. P. & Sander, M. Antioxidant properties of humic substances. Environ. Sci. Technol. 46 (9), 4916–4925 (2012).

    Google Scholar 

  22. Wu, C., Lyu, A. & Shan, S. Fulvic acid attenuates atopic dermatitis by downregulating CCL17/22. Molecules 28(8), 1–12 (2023).

  23. Schepetkin, I., Khlebnikov, A. & Kwon, B. S. Medical drugs from humus matter: focus on mumie. Drug Dev. Res. 57 (3), 140–159 (2002).

    Google Scholar 

  24. Vašková, J., Stupák, M., Vidová Ugurbaş, M., Žatko, D. & Vaško, L. Therapeutic efficiency of humic acids in intoxications. Life (Basel) 13(4), 1–23 (2023).

  25. Zhang, W. et al. Glucose-responsive, antioxidative HA-PBA-FA/EN106 hydrogel enhanced diabetic wound healing through modulation of FEM1b-FNIP1 axis and promoting angiogenesis. Bioact Mater. 30, 29–45 (2023).

    Google Scholar 

  26. Samiee-Rad, F., Hosseini Sedighi, S. F., Taherkhani, A. & Gheibi, N. Evaluation of healing effects of poultice containing 0.5% fulvic acid on male White-Male rats with skin ulcer. J. Cutan. Aesthet. Surg. 15 (1), 40–47 (2022).

    Google Scholar 

  27. de Melo, B. A. G., Motta, F. L. & Santana, M. H. A. Humic acids: structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 967–974 (2016).

    Google Scholar 

  28. Bjørklund, G. et al. Natural compounds and products from an anti-aging perspective. Molecules 27(20), 1–29 (2022).

  29. Murbach, T. S. et al. A toxicological evaluation of a fulvic and humic acids preparation. Toxicol. Rep. 7, 1242–1254 (2020).

    Google Scholar 

  30. Chien, S. J., Chen, T. C., Kuo, H. C., Chen, C. N. & Chang, S. F. Fulvic acid attenuates homocysteine-induced cyclooxygenase-2 expression in human monocytes. BMC Complement. Altern. Med. 15, 61 (2015).

    Google Scholar 

  31. Junek, R. et al. Bimodal effect of humic acids on the LPS-induced TNF-alpha release from differentiated U937 cells. Phytomedicine 16 (5), 470–476 (2009).

    Google Scholar 

  32. Aydin, S. K., Dalgic, S., Karaman, M., Kirlangic, O. F. & Yildirim, H. Effects of fulvic acid on different cancer cell lines. Proc. West. Mark. Ed. Assoc. Conf. 1(10), 1031 (2017).

  33. Liang, C. C., Park, A. Y. & Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2 (2), 329–333 (2007).

    Google Scholar 

  34. Yarrow, J. C., Perlman, Z. E., Westwood, N. J. & Mitchison, T. J. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 4, 1–9 (2004).

  35. Giridharan, S. & Srinivasan, M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407–419 (2018).

    Google Scholar 

  36. de Assis, S. I. S. et al. DR, et al. The prolonged activation of the p65 subunit of the NF-Kappa-B nuclear factor sustains the persistent effect of advanced glycation end products on inflammatory sensitization in macrophages. Int. J. Mol. Sci. 25(5), 1–16 (2024).

  37. Aggarwal, B. B. Nuclear factor-kappaB: the enemy within. Cancer Cell. 6 (3), 203–208 (2004).

    Google Scholar 

  38. Couper, K. N., Blount, D. G. & Riley, E. M. IL-10: the master regulator of immunity to infection. J. Immunol. 180 (9), 5771–5777 (2008).

    Google Scholar 

  39. Song, B. et al. Association of the gut Microbiome with fecal short-chain fatty acids, lipopolysaccharides, and obesity in young Chinese college students. Front. Nutr. 10, 1-11 (2023).

  40. Van Saene, J. J. M., Stoutenbeek, C. P. & Van Saene, H. K. F. Faecal endotoxin in human volunteers: normal values. Microb. Ecol. Health Dis. 5 (4), 179–184 (1992).

    Google Scholar 

  41. Tang, C. et al. Effects of fulvic acids on gut barrier, microbial composition, fecal ammonia emission, and growth performance in broiler chickens. J. Appl. Poult. Res. 32 (1), 100322 (2023).

    Google Scholar 

  42. Zhao, X., Zhu, D., Tan, J., Wang, R. & Qi, G. Cooperative action of fulvic acid and Bacillus paralicheniformis ferment in regulating soil microbiota and improving soil fertility and plant resistance to bacterial wilt disease. Microbiol. Spectr. 11 (2), e0407922 (2023).

    Google Scholar 

  43. El-Telbany, M. et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics 11(10), 1–15 (2022).

  44. Mohamed, A. A. et al. A combined therapy of meropenem-ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity (in vitro). Lett. Appl. Microbiol. 77(12), 1–15 (2024).

  45. Dong, T. S. et al. Obesity is associated with a distinct brain-gut microbiome signature that connects prevotella and bacteroides to the brain’s reward center. Gut Microbes. 14 (1), 2051999 (2022).

    Google Scholar 

  46. Christensen, L. et al. Prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-Wk randomized controlled trial. J. Nutr. 149 (12), 2174–2181 (2019).

    Google Scholar 

  47. Sebastià, C. et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 9(1), 1–19 (2024).

  48. Mohamed, A. A., Seyam, E. A., Hussein, S. A. & Abdel-Haleem, M. Quercetin-mediated repression of AdrA gene expression in Escherichia coli: dual roles in antibiofilm activity and oxidative stress regulation. Biol. (Bratisl) 80 (11), 3191–3201 (2025).

    Google Scholar 

Download references