References
-
Holden, B. A. et al. Global prevalence of myopia and high myopia and Temporal trends from 2000 through 2050. Ophthalmology 123, 1036–1042 (2016).
-
Verkicharla, P. K., Ohno-Matsui, K. & Saw, S. M. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol. Opt. 35, 465–475 (2015).
-
Boote, C. et al. Scleral structure and biomechanics. Prog Retin Eye Res. 74, 100773 (2020).
-
Metlapally, R. & Wildsoet, C. F. Scleral mechanisms underlying ocular growth and myopia. Prog Mol. Biol. Transl Sci. 134, 241–248 (2015).
-
Cooper, J. & Tkatchenko, A. V. A review of current concepts of the etiology and treatment of myopia. Eye Contact Lens. 44, 231–247 (2018).
-
Wollensak, G. & Spoerl, E. Collagen crosslinking of human and Porcine sclera. J. Cataract Refract. Surg. 30, 689–695 (2004).
-
Wollensak, G., Iomdina, E., Dittert, D. D., Salamatina, O. & Stoltenburg, G. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol. Scand. 83, 477–482 (2005).
-
Zhang, Y. et al. Effect of irradiation time on riboflavin-ultraviolet-A collagen crosslinking in rabbit sclera. J. Cataract Refract. Surg. 39, 1184–1189 (2013).
-
Zhang, Y. et al. Comparison of riboflavin/ultraviolet-A cross-linking in porcine, rabbit, and human sclera. Biomed Res. Int. 194204 (2014). (2014).
-
Wollensak, G. & Iomdina, E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J. Cataract Refract. Surg. 34, 651–656 (2008).
-
Sun, X., Yan, X., Chen, D., Liu, X. & Wu, Y. Efficacy and safety of microbial transglutaminase-induced scleral stiffening in vivo. Exp. Eye Res. 227, 109387 (2023).
-
Kim, T. G., Kim, W., Choi, S. & Jin, K. H. Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: future treatment for myopia progression. PLoS One. 14, e0216425 (2019).
-
Hoang, Q. V. et al. Scleral growth stunting via sub-Tenon injection of cross-linking solutions in live rabbits. Br. J. Ophthalmol. 107, 889–894 (2023).
-
Lin, X. et al. Scleral cross-linking using glyceraldehyde for the prevention of axial elongation in the rabbit: blocked axial elongation and altered scleral microstructure. Curr. Eye Res. 44, 162–171 (2019).
-
Hamdaoui, M. et al. Effect of scleral crosslinking using multiple doses of Genipin on experimental progressive myopia in tree shrews. Transl Vis. Sci. Technol. 10, 1–1 (2021).
-
Guo, L. et al. Scleral cross-linking in form-deprivation myopic Guinea pig eyes leads to glaucomatous changes. Invest. Ophthalmol. Vis. Sci. 63, 24–24 (2022).
-
Grytz, R., Hamdaoui, M., El, Levy, A. M., Girkin, C. A. & Samuels, B. C. Scleral crosslinking using Genipin has a dose-dependent effect on form-deprivation myopia in tree shrews. Invest. Ophthalmol. Vis. Sci. 59, 708–708 (2018).
-
Hamdaoui, M. et al. Scleral crosslinking using Genipin can compromise retinal structure and function in tree shrews. Exp. Eye Res. 219, 109039 (2022).
-
Brekelmans, J. et al. Long-term Biomechanical and histologic results of WST-D/NIR corneal stiffening in rabbits, up to 8 months follow-up. Invest. Ophthalmol. Vis. Sci. 58, 4089–4095 (2017).
-
Howlett, M. H. C. & McFadden, S. A. Form-deprivation myopia in the Guinea pig (Cavia porcellus). Vis. Res. 46, 267–283 (2006).
-
Xiao, H., Fan, Z. Y., Tian, X. D. & Xu, Y. C. Comparison of form-deprived myopia and lens-induced myopia in Guinea pigs. Int. J. Ophthalmol. 7, 245 (2014).
-
Xu, Y. et al. Scleral remolding-related gene expression after scleral collagen cross-linking using ultraviolet A and riboflavin in myopic Guinea pig model. Curr. Eye Res. 48, 392–401 (2023).
-
Guo, Z. et al. Efficacy and safety evaluation of scleral cross-linking using Genipin in the treatment of juvenile Guinea pigs with high myopia. J. Ocul Pharmacol. Ther. 39, 643–652 (2023).
-
Duan, X., Zhao, Y., Cai, Z., Nie, F. & Liao, L. Effects of Genipin cross-linking on Biomechanical properties of sclera in myopic Guinea pigs and glaucoma Guinea pigs. Invest. Ophthalmol. Vis. Sci. 64, 2030–2030 (2023).
-
Huan, L. et al. Protective effects of riboflavin-UVA-mediated posterior sclera collagen cross-linking in a Guinea pig model of form-deprived myopia. Int. J. Ophthalmol. 14, 333 (2021).
-
Lv, X. et al. Effects of riboflavin/ultraviolet-A scleral collagen cross-linking on regional scleral thickness and expression of MMP-2 and MT1-MMP in myopic Guinea pigs. PLoS One. 18, e0279111 (2023).
-
Chen, Z., Lv, X., Lai, L., Xu, Y. & Zhang, F. Effects of riboflavin/ultraviolet-A(UVA) scleral crosslinking on the mechanical behavior of the scleral fibroblasts of lens-induced myopia Guinea pigs. Exp. Eye Res. 235, 109618 (2023).
-
Lai, L. et al. Comparing the differences in slowing myopia progression by riboflavin/ultraviolet A scleral cross-linking before and after lens-induced myopia in Guinea pigs. Curr. Eye Res. 47, 531–539 (2022).
-
Guo, L. et al. Morphological and vascular evidence of glaucomatous damage in myopic Guinea pigs with scleral crosslinking. Sci. Rep. 2024. 141 14, 1–6 (2024).
-
Fathima, N. N., Madhan, B., Rao, J. R., Nair, B. U. & Ramasami, T. Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability. Int. J. Biol. Macromol. 34, 241–247 (2004).
-
Brekelmans, J. et al. Enzymatic digestion of Porcine Corneas cross-linked by hypo- and hyperosmolar formulations of riboflavin/ultraviolet A or WST11/near-infrared light. Transl Vis. Sci. Technol. 9, 4–4 (2020).
-
Bhavani, A. L. & Nisha, J. Dextran-The polysaccharide with versatile uses. Int. J. Pharm. Biol. Sci. 1, 569–573 (2010).
-
Díaz-Montes, E., Lukova, P., Pierre, G. & Dextran Sources, structures, and properties. Polysaccharides 2021. 2, Pages 554–565 (2), 554–565 (2021).
-
Goz, A. Structural and biomechanical effects of bacteriochlorophyll derivatives (BchlDs) and near infrared light (NIR) on sclera: elucidating the mechanism of action. (Doctoral dissertation, The Weizmann Institute of Science (Israel), (2018).
-
Zi, Y. et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in Guinea pigs. BMC Ophthalmol. 20, 1–9 (2020).
-
Hoang, Q. V., Rohrbach, D., McFadden, S. A. & Mamou, J. Regional changes in the elastic properties of myopic Guinea pig sclera. Exp. Eye Res. 186, 107739 (2019).
-
Zhang, R. et al. In-vivo sclera thickness measurements in experimental myopia of Guinea pigs. BMC Ophthalmol. 25, 1–9 (2025).
-
Barathi, A., Thu, M. K. & Beuerman, R. W. Dimensional growth of the rabbit eye. Cells Tissues Organs. 171, 276–285 (2002).
-
Olsen, T., Sanderson, S., science, X. F.-… visual & 2002, undefined. Porcine sclera:thickness and surface area. iovs.arvojournals.orgTW Olsen, S Sanderson, X Feng, WC HubbardInvestigative Ophthalmol.Vis. Sci. 2002•iovs.arvojournals.org.
-
Vurgese, S., Panda-Jonas, S. & Jonas, J. B. Scleral thickness in human eyes. PLoS One. 7, e29692 (2012).
-
Zhang, Y. et al. Spontaneously myopic Guinea pig: model of early pathologic myopia. Invest. Ophthalmol. Vis. Sci. 64, 19–19 (2023).
-
Howlett, M. H. C. & McFadden, S. A. Emmetropization and schematic eye models in developing pigmented Guinea pigs. Vis. Res. 47, 1178–1190 (2007).
-
Loeliger, M. & Rees, S. Immunocytochemical development of the Guinea pig retina. Exp. Eye Res. 80, 9–21 (2005).
-
Ziegelberger, G. ICNIRP guidelines on limits of exposure to incoherent visible and infrared radiation. Health Phys. 105, 74–96 (2013).
-
Berdugo, M. et al. Evaluation of the new photosensitizer stakel (WST-11) for photodynamic choroidal vessel occlusion in rabbit and rat eyes. Investig. Ophthalmol. Vis. Sci. 49 (4), 1633–1644 (2008).
-
Gawargious, B. A., Le, A., Lesgart, M., Ugradar, S. & Demer, J. L. Differential regional stiffening of sclera by collagen cross-linking. Curr. Eye Res. 45, 718–725 (2020).
-
Wang, M., Zhang, F., Qian, X. & Zhao, X. Regional Biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A. J. Refract. Surg. 28, 723–728 (2012).
-
Buchanan, C. I. & Marsh, R. L. Effects of long-term exercise on the Biomechanical properties of the Achilles tendon of Guinea fowl. J. Appl. Physiol. 90, 164–171 (2001).
-
Wren, T. A. L., Yerby, S. A., Beaupré, G. S. & Carter, D. R. Mechanical properties of the human Achilles tendon. Clin. Biomech. 16, 245–251 (2001).
-
Wang, E. B. et al. Safety and penetration of light into the brain. Photobiomodulation Brain Low-Level Laser Ther. Neurol. Neurosci. 49–66. https://doi.org/10.1016/B978-0-12-815305-5.00005-1 (2019).
-
Yu, N. et al. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv. Healthc. Mater. 8, 1801132 (2019).
-
Asha Krishnan, M., Yadav, K., Roach, P. & Chelvam, V. A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer. Biomater. Sci. 9, 2295–2312 (2021).
-
Tang, J. et al. Efficacy of repeated low-level red-light therapy for slowing the progression of childhood myopia: a aystematic review and meta-analysis. Am. J. Ophthalmol. 252, 153–163 (2023).
-
Mokoena, D., Kumar, D., Houreld, S. S., Abrahamse, H. & N. N. & Role of photobiomodulation on the activation of the Smad pathway via TGF-β in wound healing. J. Photochem. Photobiol B Biol. 189, 138–144 (2018).
-
Zhu, Q. et al. Repeated low-level red-light therapy for controlling onset and progression of myopia-a review. Int. J. Med. Sci. 20, 1363 (2023).
-
Howlett, M. H. C. & McFadden, S. A. Spectacle lens compensation in the pigmented Guinea pig. Vis. Res. 49, 219–227 (2009).
-
Zadnik, K., Satariano, W. A., Mutti, D. O., Sholtz, R. I. & Adams, A. J. The effect of parental history of myopia on children’s eye size. JAMA 271, 1323–1327 (1994).
-
Rada, J., Achen, V., science, S. P.-… visual & 2000, undefined. Proteoglycan composition in the human sclera during growth and aging. arvojournals.orgJA Rada, VR Achen, S Penugonda, RW Schmidt, BA MountInvestigative Ophthalmol. Vis. Sci. 2000•arvojournals.org.
-
Alenezi, B., Kazaili, A., Akhtar, R. & Radhakrishnan, H. Corneal Biomechanical properties following corneal cross-linking: does age have an effect? Exp. Eye Res. 214, 108839 (2022).
-
Paik, D. C., Wen, Q., Airiani, S., Braunstein, R. E. & Trokel, S. L. Aliphatic β-nitro alcohols for non-enzymatic collagen cross-linking of scleral tissue. Exp. Eye Res. 87, 279–285 (2008).
-
Paik, D. C., Solomon, M. R., Wen, Q., Turro, N. J. & Trokel, S. L. Aliphatic β-nitroalcohols for therapeutic corneoscleral cross-linking: chemical mechanisms and higher order nitroalcohols. Invest. Ophthalmol. Vis. Sci. 51, 836–843 (2010).
-
McFadden, S. A., Cox, N. & Abdulla, Y. Efficacy of Rose Bengal as a light activated cross-linker in Guinea pig sclera. Invest. Ophthalmol. Vis. Sci. 59, 714–714 (2018).
-
Troilo, D. et al. IMI – report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 60, M31–M88 (2019).
-
Association for Research in Vision and Ophthalmology. Statement for the Use of Animals in Ophthalmic and Vision Research. (2021). https://www.arvo.org/globalassets/arvo/advocacy/advocacy-resources/other-toolkits/updated-arvo-statement-_revised_dec_2021.pdf
-
Marcovich, A. L. et al. Stiffening of rabbit Corneas by the bacteriochlorophyll derivative WST11 744 using near infrared light. Invest. Ophthalmol. Vis. Sci. 53, 6378–6388 (2012).
-
Myles, W. E. & McFadden, S. A. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One. 17, 1–22 (2022).
-
Crank, J. The Mathematics of Diffusion (Oxford University Press, 1979).
-
Moore, M. A., Chen, W. M., Phillips, R. E., Bohachevsky, I. K. & Mcilroy, B. K. Shrinkage temperature versus protein extraction as a measure of stabilization of photooxidized tissue. https://doi.org/10.1002/(SICI)1097-4636(199610)32:2
-
Le Lous, M., Flandin, F., Herbage, D. & Allain, J. C. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim. Biophys. Acta – Gen. Subj. 717, 295–300 (1982).
