Complete genome sequence and functional characterization of Bacillus amyloliquefaciens NJF-55: a sheep-derived probiotic candidate

complete-genome-sequence-and-functional-characterization-of-bacillus-amyloliquefaciens-njf-55:-a-sheep-derived-probiotic-candidate
Complete genome sequence and functional characterization of Bacillus amyloliquefaciens NJF-55: a sheep-derived probiotic candidate

References

  1. Mazanko, M. S. et al. Beneficial effects of spore-forming Bacillus probiotic bacteria isolated from poultry microbiota on broilers’ health, growth performance, and immune system. Front. Vet. Sci. 9, 1–12 (2022).

    Google Scholar 

  2. Thi, L. et al. In vitro safety evaluation of Bacillus subtilis species complex isolated from Vietnam and their additional beneficial properties. Vietnam J. Biotechnol. 20, 727–740 (2022).

    Google Scholar 

  3. Nguyen, H. A. et al. Whole genome sequence analysis of Bacillus amyloliquefaciens strain S2.5 as a potential probiotic for feed supplement in livestock production. J. Genet. Eng. Biotechnol. 22, 100404 (2024).

    Google Scholar 

  4. Barbosa, A. M. S. et al. Performance and health parameters of sows and their litters using a probiotic supplement composed of Bacillus subtilis 541 and Bacillus amyloliquefaciens 516. Animals 14, 1–21 (2024).

    Google Scholar 

  5. Li, S. et al. Bacillus amyloliquefaciens TL promotes gut health of broilers by the contribution of bacterial extracellular polysaccharides through its anti-inflammatory potential. Front. Immunol. 15, 1–17 (2024).

    Google Scholar 

  6. Bao, C. et al. The effects of dietary Bacillus amyloliquefaciens TL106 supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, epithelial barrier integrity, and intestinal microbiota in broilers. Animals 12, 3085 (2022).

    Google Scholar 

  7. Zalila-Kolsi, I., Ben-Mahmoud, A. & Al-Barazie, R. Bacillus amyloliquefaciens: harnessing its potential for industrial, medical, and agricultural applications—a comprehensive review. Microorganisms 11, 2215 (2023).

    Google Scholar 

  8. Bai, J. et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 13, 1–14 (2022).

    Google Scholar 

  9. Luo, L., Zhao, C., Wang, E., Raza, A. & Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol. Res. 259, 127016 (2022).

    Google Scholar 

  10. Wizna, Yanti, E. P. & Amizar, R. Effect of Bacillus amyloliquefaciens as probiotic on total colonies of bacteria, pH and cellulase activity in the small intestine of domestic chicken. Asian J. Agric. Biol. 7, 176–183 (2019).

    Google Scholar 

  11. Shija, V. M. et al. Dietary effects of probiotic bacteria, Bacillus amyloliquefaciens AV5 on growth, serum and mucus immune response, metabolomics, and lipid metabolism in nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 202 , 4253969. (2024).

    Google Scholar 

  12. Du, H. et al. Effects of Bacillus amyloliquefaciens TL106 isolated from Tibetan pigs on probiotic potential and intestinal microbes in weaned piglets. Microbiol. Spectr. 10, e01205–e01221 (2022).

    Google Scholar 

  13. Chen, S. et al. The effects of Bacillus amyloliquefaciens SC06 on behavior and brain function in broilers infected by clostridium perfringens. Animals 14, 1–15 (2024).

    Google Scholar 

  14. Zhang, T. et al. Alleviation of neuronal cell death and memory deficit with chungkookjang made with Bacillus amyloliquefaciens and Bacillus subtilis potentially through promoting gut–brain axis in artery-occluded gerbils. Foods 10, 2697 (2021).

    Google Scholar 

  15. Abd-Elhalim, B. T., Gamal, R. F., El-Sayed, S. M. & Abu-Hussien, S. H. Optimizing alpha-amylase from Bacillus amyloliquefaciens on bread waste for effective industrial wastewater treatment and textile desizing through response surface methodology. Sci. Rep. 13, 1–17 (2023).

    Google Scholar 

  16. Xiong, D. et al. Purification, and characterization of a laccase-degrading aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins (Basel). 14, 250 (2022).

    Google Scholar 

  17. Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).

    Google Scholar 

  18. Luo, Y. et al. Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism. Bioresour. Bioprocess. 9, 74 (2022).

    Google Scholar 

  19. Ponomareva, E. N. et al. Probiotic Bacillus amyloliquefaciens B-1895 improved growth of juvenile trout. Food Sci. Anim. Resour. 44, 805–816 (2024).

    Google Scholar 

  20. Horyanto, D. et al. Bacillus amyloliquefaciens probiotics mix supplementation in a broiler leaky gut model. Microorganisms 12, 419 (2024).

    Google Scholar 

  21. Rückert, C., Blom, J., Chen, X. H., Reva, O. & Borriss, R. Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J. Biotechnol. 155, 78–85 (2011).

    Google Scholar 

  22. Dhumal, G., Mohan, M. & Chaudhari, K. Bacillus amyloliquefaciens: A review. Res. Rev. J. Microbiol. Virol. 11, 9–17 (2021).

    Google Scholar 

  23. Maslennikova, V. S. et al. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L). J. Fungi. 9, 1142 (2023).

    Google Scholar 

  24. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Google Scholar 

  25. Salzberg, S. L. et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22, 557–567 (2012).

    Google Scholar 

  26. Bosi, E. et al. MeDuSa: A multi-draft based scaffolder. Bioinformatics 31, 2443–2451 (2015).

    Google Scholar 

  27. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–22 (2017).

    Google Scholar 

  28. Alonge, M. et al. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 1–19 (2022).

    Google Scholar 

  29. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  30. Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 1–8 (2015).

    Google Scholar 

  31. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Google Scholar 

  32. Schwengers, O. et al. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genomics. 7, 000685 (2021).

    Google Scholar 

  33. Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an ‘operational group B. amyloliquefaciens’ within the B. subtilis species complex. Front. Microbiol. 8, 1–15 (2017).

    Google Scholar 

  34. Feng, J. et al. Curing the plasmid pMC1 from the Poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl. Biochem. Biotechnol. 171, 532–542 (2013).

    Google Scholar 

  35. Molinatto, G. et al. Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. Plantarum S499 developmental traits and lipopeptide production. Front. Microbiol. 8, 1–18 (2017).

    Google Scholar 

  36. Choi, Y. et al. A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun. Biol. 4, 1–16 (2021).

    Google Scholar 

  37. Murai, M., Miyashita, H., Araki, H., Seki, T. & Oshima, Y. Molecular structure of the replication origin of a Bacillus amyloliquefaciens plasmid pFTB14. Mol. General Genet. MGG 210, 92–100 (1987).

    Google Scholar 

  38. Mason, V. P., Syrett, N., Hassanali, T. & Osborn, A. M. Diversity and linkage of replication and mobilisation genes in Bacillus rolling circle-replicating plasmids from diverse geographical origins. FEMS Microbiol. Ecol. 42, 235–241 (2002).

    Google Scholar 

  39. Blum, M. et al. The interpro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    Google Scholar 

  40. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Google Scholar 

  41. Carbon, S. et al. The gene ontology resource: enriching a gold mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Google Scholar 

  42. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Google Scholar 

  43. Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Google Scholar 

  44. Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).

    Google Scholar 

  45. Lombard, V., Ramulu, G., Drula, H., Coutinho, E., Henrissat, B. & P. M. & The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490–495 (2014).

    Google Scholar 

  46. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    Google Scholar 

  47. Begley, M., Hill, C. & Gahan, C. G. M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738 (2006).

    Google Scholar 

  48. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. TRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    Google Scholar 

  49. Miethke, M. et al. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61, 1413–1427 (2006).

    Google Scholar 

  50. Diehl, A. et al. Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc. Natl. Acad. Sci. U S A. 115, 3237–3242 (2018).

    Google Scholar 

  51. Dahl, M. K., Msadek, T., Kunst, F. & Rapoport, G. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173, 2539–2547 (1991).

    Google Scholar 

  52. Yin, Y., Wang, X., Zhang, P., Wang, P. & Wen, J. Strategies for improving fengycin production: A review. Microb. Cell. Fact. 23, 1–14 (2024).

    Google Scholar 

  53. Yang, H., Li, X., Li, X., Yu, H. & Shen, Z. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal. Bioanal Chem. 407, 2529–2542 (2015).

    Google Scholar 

  54. Koumoutsi, A. et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186, 1084–1096 (2004).

    Google Scholar 

  55. Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. U S A. 104, 1506–1509 (2007).

    Google Scholar 

  56. Moldenhauer, J. et al. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42: Direct evidence for β,y dehydration by a iraiw-acyltransferase polyketide synthase. Angew Chemie – Int. Ed. 49, 1465–1467 (2010).

    Google Scholar 

  57. Chen, X. H. et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 188, 4024–4036 (2006).

    Google Scholar 

  58. Schneider, K. et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70, 1417–1423 (2007).

    Google Scholar 

  59. Blin, K. et al. AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Google Scholar 

  60. Van Heel, A. J. et al. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Google Scholar 

  61. Alcock, B. P. et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51, D690–D699 (2023).

    Google Scholar 

  62. Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    Google Scholar 

  63. Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).

    Google Scholar 

  64. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc. Natl. Acad. Sci. U S A. 102, 13950–13955 (2005).

    Google Scholar 

  65. Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: The bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).

    Google Scholar 

  66. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996 (2018).

    Google Scholar 

  67. Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Google Scholar 

  68. Bryant, M. P. & Robinson, I. M. An improved nonselective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy. Sci. 44, 1446–1456 (1961).

    Google Scholar 

  69. Al-hasan, B. A. The first isolation and detection of ornithobacterium rhinotracheale from swollen head syndrome-infected broiler flocks in Iraq. 14, 2346–2355 (2021).

  70. Mao, D., Zhou, Q., Chen, C. & Quan, Z. Coverage evaluation of universal bacterial primers using the metagenomic datasets. (2012).

  71. Weber, S., Ramirez, C. & Doerfler, W. Signal hotspot mutations in SARS-CoV-2 genomes evolve as the virus spreads and actively replicates in different parts of the world. Virus Res. 289, 198170 (2020).

    Google Scholar 

  72. Edgar, R. C. & MUSCLE Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Google Scholar 

  73. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  74. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Google Scholar 

  75. Bolger, A. M., Lohse, M., Usadel, B. & Trimmomatic A flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  76. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Google Scholar 

  77. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, (2014).

  78. Laetsch, D. R., Blaxter, M. L. & BlobTools Interrogation of genome assemblies. F1000Research 6, 1287 (2017).

    Google Scholar 

  79. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with kraken 2. Genome Biol. 20, 1–13 (2019).

    Google Scholar 

  80. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).

    Google Scholar 

  81. Jolley, K. A., Maiden, M. C. J. & BIGSdb Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, (2010).

  82. Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, E35 (2018).

    Google Scholar 

  83. Carattoli, A. et al. In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).

    Google Scholar 

  84. Paganini, J. A. et al. PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli. Microb. Genomics. 10, 1–14 (2024).

    Google Scholar 

  85. Antipov, D. et al. Genome analysis plasmidspades: assembling plasmids from whole genome sequencing data. 32, 3380–3387 (2016).

  86. Chu, C., Li, X., Wu, Y. & GAPPadder A sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genom. 20, 1–10 (2019).

    Google Scholar 

  87. Nadalin, F., Vezzi, F., Policriti, A. & GapFiller A de Novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13, (2012).

  88. Xu, M. et al. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9, 1–11 (2020).

    Google Scholar 

  89. Hunt, M. et al. Automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 1–10 (2015). Circlator.

    Google Scholar 

  90. Brettin, T. et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5, (2015).

  91. Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  92. Zheng, J. dbCAN3: automated carbohydrate-active enzyme and. 51, 115–121 (2023).

  93. Weimann, A. et al. From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer. mSystems 1, (2016).

  94. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).

    Google Scholar 

  95. Jia, B. et al. CARD 2017 : Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

  96. Gupta, S. K. et al. ARG-annot, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).

    Google Scholar 

  97. Feldgarden, M. et al. Validating the amrfinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, 1–19 (2019).

    Google Scholar 

  98. Doster, E. et al. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48, D561–D569 (2020).

    Google Scholar 

  99. Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: hierarchical and refined dataset for big data analysis – 10 years on. Nucleic Acids Res. 44, D694–D697 (2016).

    Google Scholar 

  100. Ingle, D. et al. In Silico serotyping of E. Coli from short read data identifies limited novel o-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb. Genomics. 2, 1–14 (2016).

    Google Scholar 

  101. Akhter, S., Aziz, R. K., Edwards, R. A. & PhiSpy A novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic Acids Res. 40, 1–13 (2012).

    Google Scholar 

  102. Eren, A. M. et al. Anvi’o: An advanced analysis and visualization platformfor ’omics data. PeerJ 2015, 1–29 (2015).

Download references