References
-
Chhikara, B. S. & Parang, K. Global cancer statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451–451 (2023).
-
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
-
Garrido-Castro, A. C., Lin, N. U. & Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 9, 176–198 (2019).
-
Anders, C. K., Johnson, R., Litton, J., Phillips, M. & Bleyer, A. Breast cancer before age 40 years. Semin Oncol. 36, 237–249 (2009).
-
Geyer, F. C. et al. The spectrum of triple-negative breast disease. Am. J. Pathol. 187, 2139–2151 (2017).
-
Waks, A. G. & Winer, E. P. Breast cancer treatment. JAMA 321, 288 (2019).
-
Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin Cell. Dev. Biol. 80, 50–64 (2018).
-
Prasad, S., Gupta, S. C. & Tyagi, A. K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 387, 95–105 (2017).
-
Kumari, S., Badana, A. K. & Malla, R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights. 13, 1177271918755391 (2018).
-
Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).
-
Williamson, G., Kay, C. D. & Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 17, 1054–1112 (2018).
-
Teng, H. & Chen, L. Polyphenols and bioavailability: an update. Critc Rev. Food Sci. Nutrit. 59, 2040–2051 (2019).
-
Fraga, C. G., Croft, K. D., Kennedy, D. O. & Tomás-Barberán, F. A. The effects of polyphenols and other bioactives on human health. Food Funct. 10, 514–528 (2019).
-
Durazzo, A. et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 33, 2221–2243 (2019).
-
Vernieri, C. et al. Diet and supplements in cancer prevention and treatment: clinical evidences and future perspectives. Crit. Rev. Oncol. Hemat. 123, 57–73 (2018).
-
Mathers, J. C. Nutrigenomics in the modern era. Proc. Nutr. Soc. 76, 265–275 (2017).
-
Azwanida, N. N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants. 4, 2167–0412 (2015).
-
Chomchan, R., Siripongvutikorn, A. P. D. S., Puttarak, D. P. & Rattanapon, M. R. Investigation of phytochemical constituents, phenolic profiles and antioxidant activities of ricegrass juice compared to wheatgrass juice. Funct. Food Health Dis. 6, 822 (2016).
-
Yıldırım Baştemur, G., Akpınar, R., Kültür, Ş. & Percin Ozkorucuklu, S. Evaluation of phenolic and anthraquinone profiles of Polygonacaeae family from Turkey. Sylwan, 168 (2024).
-
Ngamkhae, N. et al. Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound-assisted and microwave-assisted extraction. J. Appl. Res. Med. Aromat. Plants. 28, 100369 (2022).
-
Baştemur, G. Y., Akpınar, R., Kır, E. & Özkorucuklu, S. P. Development and validation of the HPLC-DAD method for the simultaneous determination of anthraquinones in Rumex Crispus L. and Rumex acetosella L. plants and evaluation of their antioxidant capacities. J. Anal. Chem. 79, 180–190 (2024).
-
Akpınar, R. et al. Phytochemical profiling, in vitro biological activities, and in Silico (molecular Docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. J. Sep. Sci. 47, 2300750 (2024).
-
Kaur, N. et al. Effect of growing conditions on proximate, mineral, amino acid, phenolic composition and antioxidant properties of wheatgrass from different wheat (Triticum aestivum L.) varieties. Food Chem. 341, 128201 (2021).
-
Hiscocks, J. & Frisch, M. J. in Gaussian 09: IOps Reference. (eds Caricato, M. & Frisch, M. J.) (Wallingford, CT, USA, 2009).
-
Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
-
Gutierrez, C. & Schiff, R. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 135, 55–62 (2011).
-
Bicak, B. & Gunduz, S. K. In Silico Methods and Targeted Receptors Used in Cancer studies, in Interdisciplinary Cancer Research pp. 125–146 (Springer Nature Switzerland, 2024).
-
Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).
-
Sasaki, T., Hiroki, K. & Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed. Res. Int. 2013, 1–8 (2013).
-
Mehrabi, M. et al. Development of a human epidermal growth factor derivative with EGFR-blocking and depleted biological activities: a comparative in vitro study using EGFR-positive breast cancer cells. Int. J. Biol. Macromol. 103, 275–285 (2017).
-
Napoleon, J. V. et al. Small molecule binding to inhibitor of nuclear factor kappa-B kinase subunit beta in an ATP non-competitive manner. Chem. Commun. 57, 4678–4681 (2021).
-
Chatterjee, S., Behnam Azad, B. & Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 124, 31–82 (2014).
-
Zhang, Y. & Li, Z. CXCR4 as a potential therapeutic target in cancer therapy. Eur. J. Pharmacol. 826, 35–40 (2018).
-
Prabhavathi, H. et al. Molecular Docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. J. Biomol. Struct. Dyn. 40, 4713–4724 (2022).
-
Kesuma, D., Siswandono, S. & Kirtishanti, A. Molecular Docking and biological activity of N- (4-methoxy)-benzoyl-N’-phenylthiourea and N-(4- trifluoro)-benzoyl-N’-phenylthiourea as antibreast cancer candidates. Rasayan J. Chem. 15, 1503–1508 (2022).
-
Adwas, A. A., Elsayed, A., Azab, A. E. & Quwaydir, F. A. Oxidative stress and antioxidant mechanisms in the human body. J. Appl. Biotechnol. Bioeng. 6, 43–47 (2019).
-
Barton, A. & Di Mascio, P. The role of superoxide dismutase in the detoxification of superoxide radicals in cells and tissues. Free Radic Res. 40, 463–478 (2006).
-
Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 74, 324–329 (2007).
-
Anwar, S. et al. Exploring therapeutic potential of catalase: strategies in disease prevention and management. Biomolecules 14, 697 (2024).
-
Weinstein, J. R. & Sondheimer, H. Molecular mechanisms of catalase regulation and role in oxidative stress response. Free Radic Biol. Med. 108, 218–229 (2017).
-
Ighodaro, O. M. & Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J. Med. 54, 287–293 (2018).
-
Suzuki, T. et al. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell. Rep. 28, 746–758e4 (2019).
-
de Cavalcante, A. et al. TM. An HPLC method to determine phenolic compounds of plant extracts: application to Byrsonima crassifolia and Senna alata leaves. Pharmacogn Res. 14, 395–404 (2022).
-
Flandez, L. E. L., Castillo-Israel, K. A. T., Rivadeneira, J. P., Tuaño, A. P. P. & Hizon-Fradejas, A. B. Development and validation of an HPLC-DAD method for the simultaneous analysis of phenolic compounds. Malays J. Fundam Appl. Sci. 19, 855–864 (2023).
-
Yoon, N., Jeong, S. H., Park, J. S., Kim, W. J. & Lee, S. Comparative analysis of chemical composition and radical-scavenging activities in two wheat cultivars. Appl. Sci. 14, 10763 (2024).
-
Jabeen, N. M., Yadav, P. & Naika, M. Nutritional and antioxidant potential of lyophilized wheat grass juice and shoot powders. J. Res. ANGRAU. 48, 07–22 (2020).
-
Ove, T. A., Khatun, A. A., Saifullah, S. B. & Ahmed, M. Effectiveness of solvent extraction on phytochemicals and antioxidant activities from fresh and dried wheatgrass. Eur. J. Nutr. Food Saf. 13, 1–10 (2021).
-
Al-Wahaibi, L. H., Joubert, J., Blacque, O., Al-Shaalan, N. H. & El-Emam, A. A. Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl) sulfanyl]-4-methyl-4 H-1, 2, 4-triazole, a potential 11β-HSD1 inhibitor. Sci. Rep. 9 (1), 19745 (2019).
-
Khadka, M. et al. Spectroscopic, quantum chemical, and topological calculations of the phenylephrine molecule using density functional theory. Sci. Rep. 15 (1), 208 (2025).
-
Winkel, A. F. et al. Brüne B and schmoll D. Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling. J. Biol. Chem. 290, 28446–28455 (2015).
-
Baghel, S. S., Shrivastava, N., Baghel, R. S., Agrawal, P. & Rajput, S. A review of quercetin: antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 1 (1), 146–160 (2012).
-
Ezzati, M., Yousefi, B., Velaei, K. & Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 248, 117463 (2020).
-
Ceci, C. et al. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10 (11), 1756 (2018).
-
Golmohammadi, M., Zamanian, M. Y., Jalal, S. M., Noraldeen, S. A. M., Ramírez-Coronel,A. A., Oudaha, K. H., … & Kamiab, Z. (2023). A comprehensive review on Ellagic acid in breast cancer treatment:From cellular effects to molecular mechanisms of action. Food Science & Nutrition, 11(12), 7458–7468.
-
Alshatwi, A. A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Experimental Clin. Cancer Res. 29 (1), 167 (2010).
-
Mohammad Nabavi, S., Habtemariam, S., Daglia, M. & Fazel Nabavi, S. Apigenin and breast cancers: from chemistry to medicine. Anti-Cancer Agents Med. Chemistry-Anti-Cancer Agents). 15 (6), 728–735 (2015).
-
Vrhovac Madunić, I. et al. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn. Schmiedebergs Arch. Pharmacol. 391 (5), 537–550 (2018).
-
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv Rev. 23, 3–25 (1997).
-
Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).
-
DeGoey, D. A., Chen, H. J., Cox, P. B. & Wendt, M. D. Beyond the rule of 5: lessons learned from abbvie’s drugs and compound collection. J. Med. Chem. 61, 2636–2651 (2018).
-
Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 1, 337–341 (2004).
-
Salehi, B. et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 20, 1305 (2019).
-
D’Andrea, G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106, 256–271 (2015).
-
Artursson, P. & Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880–885 (1991).
-
Volpe, D. A. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci. 97, 712–725 (2008).
-
Zhao, M. et al. Ellagic acid nanoparticles for improved oral bioavailability: preparation, characterization and pharmacokinetics. Molecules 25, 3335 (2020).
-
Pangeni, R., Sahni, J. K., Ali, J., Sharma, S. & Baboota, S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 11, 1285–1298 (2014).
-
Sanguinetti, M. C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).
-
Kramer, C., Beck, B., Kriegl, J. M. & Clark, T. A surface-integral model for log P. J. Chem. Inf. Model. 50, 404–414 (2010).
-
Espíndola, K. M. M. et al. Chemical and Pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 9, 541 (2019).
-
Bouzaiene, N. N., Chaabane, F., Sassi, A., Chekir-Ghedira, L. & Ghedira, K. Effect of apigenin-7-glucoside, Genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 144, 80–85 (2016).
-
Abraham, K., Wöhrlin, F., Lindtner, O., Heinemeyer, G. & Lampen, A. Toxicology and risk assessment of coumarin: focus on human data. Mol. Nutr. Food Res. 54, 228–239 (2010).
-
Lake, B. G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999).
-
Celik, S., Demirag, A. D., Ozel, A. E. & Akyuz, S. Molecular Structure, vibrational Spectra, molecular Docking, and ADMET study of cellulose triacetate II. Opt. Spectrosc. 128 (8), 1138–1150 (2020).
-
Shukla, S. & Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27, 962–978 (2010).
-
Salmani, J. M. M., Zhang, X. P., Jacob, J. A. & Chen, B. A. Apigenin’s anticancer properties and molecular mechanisms of action: recent advances and future prospectives. Chin. J. Nat. Med. 15, 321–329 (2017).
-
González-Sarrías, A., Espín, J. C., Tomás-Barberán, F. A. & García-Conesa, M. T. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol. Nutr. Food Res. 53, 686–698 (2009).
-
Heleno, S. A., Martins, A., Queiroz, M. J. R. P. & Ferreira, I. C. F. R. Bioactivity of phenolic acids: metabolites versus parent compounds. Food Chem. 173, 501–513 (2015).
-
Pei, R., Liu, X. & Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 61, 153–159 (2020).
-
Guo, Y., Luo, J., Tan, S., Otieno, B. O. & Zhang, Z. The applications of vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 49, 175–186 (2013).
-
Challa, R., Ahuja, A., Ali, J. & Khar, R. K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6, E329–E357 (2005).
-
Rosendahl, A. H. et al. Caffeine and caffeic acid inhibit growth and modify Estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin. Cancer Res. 21, 1877–1887 (2015).
-
Kulkarni, S. D. et al. Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res. 20, 218–227 (2006).
-
Arya, P. & Kumar, M. Chemoprevention by triticum aestivum of mouse skin carcinogenesis induced by DMBA and Croton oil – association with oxidative status. Asian Pac. J. Cancer Prev. 12, 143–148 (2011).
