Phytochemical, in silico, and in vitro studies of wheatgrass (Triticum aestivum L.) juice powder

phytochemical,-in-silico,-and-in-vitro-studies-of-wheatgrass-(triticum-aestivum-l.)-juice-powder
Phytochemical, in silico, and in vitro studies of wheatgrass (Triticum aestivum L.) juice powder

References

  1. Chhikara, B. S. & Parang, K. Global cancer statistics 2022: the trends projection analysis. Chem. Biol. Lett. 10, 451–451 (2023).

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Google Scholar 

  3. Garrido-Castro, A. C., Lin, N. U. & Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 9, 176–198 (2019).

    Google Scholar 

  4. Anders, C. K., Johnson, R., Litton, J., Phillips, M. & Bleyer, A. Breast cancer before age 40 years. Semin Oncol. 36, 237–249 (2009).

    Google Scholar 

  5. Geyer, F. C. et al. The spectrum of triple-negative breast disease. Am. J. Pathol. 187, 2139–2151 (2017).

    Google Scholar 

  6. Waks, A. G. & Winer, E. P. Breast cancer treatment. JAMA 321, 288 (2019).

    Google Scholar 

  7. Moloney, J. N. & Cotter, T. G. ROS signalling in the biology of cancer. Semin Cell. Dev. Biol. 80, 50–64 (2018).

    Google Scholar 

  8. Prasad, S., Gupta, S. C. & Tyagi, A. K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 387, 95–105 (2017).

    Google Scholar 

  9. Kumari, S., Badana, A. K. & Malla, R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights. 13, 1177271918755391 (2018).

    Google Scholar 

  10. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Google Scholar 

  11. Williamson, G., Kay, C. D. & Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 17, 1054–1112 (2018).

    Google Scholar 

  12. Teng, H. & Chen, L. Polyphenols and bioavailability: an update. Critc Rev. Food Sci. Nutrit. 59, 2040–2051 (2019).

    Google Scholar 

  13. Fraga, C. G., Croft, K. D., Kennedy, D. O. & Tomás-Barberán, F. A. The effects of polyphenols and other bioactives on human health. Food Funct. 10, 514–528 (2019).

    Google Scholar 

  14. Durazzo, A. et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res. 33, 2221–2243 (2019).

    Google Scholar 

  15. Vernieri, C. et al. Diet and supplements in cancer prevention and treatment: clinical evidences and future perspectives. Crit. Rev. Oncol. Hemat. 123, 57–73 (2018).

    Google Scholar 

  16. Mathers, J. C. Nutrigenomics in the modern era. Proc. Nutr. Soc. 76, 265–275 (2017).

    Google Scholar 

  17. Azwanida, N. N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants. 4, 2167–0412 (2015).

    Google Scholar 

  18. Chomchan, R., Siripongvutikorn, A. P. D. S., Puttarak, D. P. & Rattanapon, M. R. Investigation of phytochemical constituents, phenolic profiles and antioxidant activities of ricegrass juice compared to wheatgrass juice. Funct. Food Health Dis. 6, 822 (2016).

    Google Scholar 

  19. Yıldırım Baştemur, G., Akpınar, R., Kültür, Ş. & Percin Ozkorucuklu, S. Evaluation of phenolic and anthraquinone profiles of Polygonacaeae family from Turkey. Sylwan, 168 (2024).

  20. Ngamkhae, N. et al. Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound-assisted and microwave-assisted extraction. J. Appl. Res. Med. Aromat. Plants. 28, 100369 (2022).

    Google Scholar 

  21. Baştemur, G. Y., Akpınar, R., Kır, E. & Özkorucuklu, S. P. Development and validation of the HPLC-DAD method for the simultaneous determination of anthraquinones in Rumex Crispus L. and Rumex acetosella L. plants and evaluation of their antioxidant capacities. J. Anal. Chem. 79, 180–190 (2024).

    Google Scholar 

  22. Akpınar, R. et al. Phytochemical profiling, in vitro biological activities, and in Silico (molecular Docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. J. Sep. Sci. 47, 2300750 (2024).

    Google Scholar 

  23. Kaur, N. et al. Effect of growing conditions on proximate, mineral, amino acid, phenolic composition and antioxidant properties of wheatgrass from different wheat (Triticum aestivum L.) varieties. Food Chem. 341, 128201 (2021).

    Google Scholar 

  24. Hiscocks, J. & Frisch, M. J. in Gaussian 09: IOps Reference. (eds Caricato, M. & Frisch, M. J.) (Wallingford, CT, USA, 2009).

  25. Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Google Scholar 

  26. Gutierrez, C. & Schiff, R. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 135, 55–62 (2011).

    Google Scholar 

  27. Bicak, B. & Gunduz, S. K. In Silico Methods and Targeted Receptors Used in Cancer studies, in Interdisciplinary Cancer Research pp. 125–146 (Springer Nature Switzerland, 2024).

  28. Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    Google Scholar 

  29. Sasaki, T., Hiroki, K. & Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed. Res. Int. 2013, 1–8 (2013).

    Google Scholar 

  30. Mehrabi, M. et al. Development of a human epidermal growth factor derivative with EGFR-blocking and depleted biological activities: a comparative in vitro study using EGFR-positive breast cancer cells. Int. J. Biol. Macromol. 103, 275–285 (2017).

    Google Scholar 

  31. Napoleon, J. V. et al. Small molecule binding to inhibitor of nuclear factor kappa-B kinase subunit beta in an ATP non-competitive manner. Chem. Commun. 57, 4678–4681 (2021).

    Google Scholar 

  32. Chatterjee, S., Behnam Azad, B. & Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 124, 31–82 (2014).

    Google Scholar 

  33. Zhang, Y. & Li, Z. CXCR4 as a potential therapeutic target in cancer therapy. Eur. J. Pharmacol. 826, 35–40 (2018).

    Google Scholar 

  34. Prabhavathi, H. et al. Molecular Docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. J. Biomol. Struct. Dyn. 40, 4713–4724 (2022).

    Google Scholar 

  35. Kesuma, D., Siswandono, S. & Kirtishanti, A. Molecular Docking and biological activity of N- (4-methoxy)-benzoyl-N’-phenylthiourea and N-(4- trifluoro)-benzoyl-N’-phenylthiourea as antibreast cancer candidates. Rasayan J. Chem. 15, 1503–1508 (2022).

    Google Scholar 

  36. Adwas, A. A., Elsayed, A., Azab, A. E. & Quwaydir, F. A. Oxidative stress and antioxidant mechanisms in the human body. J. Appl. Biotechnol. Bioeng. 6, 43–47 (2019).

    Google Scholar 

  37. Barton, A. & Di Mascio, P. The role of superoxide dismutase in the detoxification of superoxide radicals in cells and tissues. Free Radic Res. 40, 463–478 (2006).

    Google Scholar 

  38. Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 74, 324–329 (2007).

    Google Scholar 

  39. Anwar, S. et al. Exploring therapeutic potential of catalase: strategies in disease prevention and management. Biomolecules 14, 697 (2024).

    Google Scholar 

  40. Weinstein, J. R. & Sondheimer, H. Molecular mechanisms of catalase regulation and role in oxidative stress response. Free Radic Biol. Med. 108, 218–229 (2017).

    Google Scholar 

  41. Ighodaro, O. M. & Akinloye, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J. Med. 54, 287–293 (2018).

    Google Scholar 

  42. Suzuki, T. et al. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell. Rep. 28, 746–758e4 (2019).

    Google Scholar 

  43. de Cavalcante, A. et al. TM. An HPLC method to determine phenolic compounds of plant extracts: application to Byrsonima crassifolia and Senna alata leaves. Pharmacogn Res. 14, 395–404 (2022).

  44. Flandez, L. E. L., Castillo-Israel, K. A. T., Rivadeneira, J. P., Tuaño, A. P. P. & Hizon-Fradejas, A. B. Development and validation of an HPLC-DAD method for the simultaneous analysis of phenolic compounds. Malays J. Fundam Appl. Sci. 19, 855–864 (2023).

    Google Scholar 

  45. Yoon, N., Jeong, S. H., Park, J. S., Kim, W. J. & Lee, S. Comparative analysis of chemical composition and radical-scavenging activities in two wheat cultivars. Appl. Sci. 14, 10763 (2024).

    Google Scholar 

  46. Jabeen, N. M., Yadav, P. & Naika, M. Nutritional and antioxidant potential of lyophilized wheat grass juice and shoot powders. J. Res. ANGRAU. 48, 07–22 (2020).

    Google Scholar 

  47. Ove, T. A., Khatun, A. A., Saifullah, S. B. & Ahmed, M. Effectiveness of solvent extraction on phytochemicals and antioxidant activities from fresh and dried wheatgrass. Eur. J. Nutr. Food Saf. 13, 1–10 (2021).

    Google Scholar 

  48. Al-Wahaibi, L. H., Joubert, J., Blacque, O., Al-Shaalan, N. H. & El-Emam, A. A. Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl) sulfanyl]-4-methyl-4 H-1, 2, 4-triazole, a potential 11β-HSD1 inhibitor. Sci. Rep. 9 (1), 19745 (2019).

    Google Scholar 

  49. Khadka, M. et al. Spectroscopic, quantum chemical, and topological calculations of the phenylephrine molecule using density functional theory. Sci. Rep. 15 (1), 208 (2025).

    Google Scholar 

  50. Winkel, A. F. et al. Brüne B and schmoll D. Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling. J. Biol. Chem. 290, 28446–28455 (2015).

    Google Scholar 

  51. Baghel, S. S., Shrivastava, N., Baghel, R. S., Agrawal, P. & Rajput, S. A review of quercetin: antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 1 (1), 146–160 (2012).

    Google Scholar 

  52. Ezzati, M., Yousefi, B., Velaei, K. & Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 248, 117463 (2020).

    Google Scholar 

  53. Ceci, C. et al. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10 (11), 1756 (2018).

    Google Scholar 

  54. Golmohammadi, M., Zamanian, M. Y., Jalal, S. M., Noraldeen, S. A. M., Ramírez-Coronel,A. A., Oudaha, K. H., … & Kamiab, Z. (2023). A comprehensive review on Ellagic acid in breast cancer treatment:From cellular effects to molecular mechanisms of action. Food Science & Nutrition, 11(12), 7458–7468.

  55. Alshatwi, A. A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Experimental Clin. Cancer Res. 29 (1), 167 (2010).

    Google Scholar 

  56. Mohammad Nabavi, S., Habtemariam, S., Daglia, M. & Fazel Nabavi, S. Apigenin and breast cancers: from chemistry to medicine. Anti-Cancer Agents Med. Chemistry-Anti-Cancer Agents). 15 (6), 728–735 (2015).

    Google Scholar 

  57. Vrhovac Madunić, I. et al. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn. Schmiedebergs Arch. Pharmacol. 391 (5), 537–550 (2018).

    Google Scholar 

  58. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv Rev. 23, 3–25 (1997).

    Google Scholar 

  59. Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).

    Google Scholar 

  60. DeGoey, D. A., Chen, H. J., Cox, P. B. & Wendt, M. D. Beyond the rule of 5: lessons learned from abbvie’s drugs and compound collection. J. Med. Chem. 61, 2636–2651 (2018).

    Google Scholar 

  61. Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 1, 337–341 (2004).

    Google Scholar 

  62. Salehi, B. et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 20, 1305 (2019).

    Google Scholar 

  63. D’Andrea, G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106, 256–271 (2015).

    Google Scholar 

  64. Artursson, P. & Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880–885 (1991).

    Google Scholar 

  65. Volpe, D. A. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci. 97, 712–725 (2008).

    Google Scholar 

  66. Zhao, M. et al. Ellagic acid nanoparticles for improved oral bioavailability: preparation, characterization and pharmacokinetics. Molecules 25, 3335 (2020).

    Google Scholar 

  67. Pangeni, R., Sahni, J. K., Ali, J., Sharma, S. & Baboota, S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 11, 1285–1298 (2014).

    Google Scholar 

  68. Sanguinetti, M. C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).

    Google Scholar 

  69. Kramer, C., Beck, B., Kriegl, J. M. & Clark, T. A surface-integral model for log P. J. Chem. Inf. Model. 50, 404–414 (2010).

    Google Scholar 

  70. Espíndola, K. M. M. et al. Chemical and Pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 9, 541 (2019).

    Google Scholar 

  71. Bouzaiene, N. N., Chaabane, F., Sassi, A., Chekir-Ghedira, L. & Ghedira, K. Effect of apigenin-7-glucoside, Genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 144, 80–85 (2016).

    Google Scholar 

  72. Abraham, K., Wöhrlin, F., Lindtner, O., Heinemeyer, G. & Lampen, A. Toxicology and risk assessment of coumarin: focus on human data. Mol. Nutr. Food Res. 54, 228–239 (2010).

    Google Scholar 

  73. Lake, B. G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol. 37, 423–453 (1999).

    Google Scholar 

  74. Celik, S., Demirag, A. D., Ozel, A. E. & Akyuz, S. Molecular Structure, vibrational Spectra, molecular Docking, and ADMET study of cellulose triacetate II. Opt. Spectrosc. 128 (8), 1138–1150 (2020).

    Google Scholar 

  75. Shukla, S. & Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27, 962–978 (2010).

    Google Scholar 

  76. Salmani, J. M. M., Zhang, X. P., Jacob, J. A. & Chen, B. A. Apigenin’s anticancer properties and molecular mechanisms of action: recent advances and future prospectives. Chin. J. Nat. Med. 15, 321–329 (2017).

    Google Scholar 

  77. González-Sarrías, A., Espín, J. C., Tomás-Barberán, F. A. & García-Conesa, M. T. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol. Nutr. Food Res. 53, 686–698 (2009).

    Google Scholar 

  78. Heleno, S. A., Martins, A., Queiroz, M. J. R. P. & Ferreira, I. C. F. R. Bioactivity of phenolic acids: metabolites versus parent compounds. Food Chem. 173, 501–513 (2015).

    Google Scholar 

  79. Pei, R., Liu, X. & Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 61, 153–159 (2020).

    Google Scholar 

  80. Guo, Y., Luo, J., Tan, S., Otieno, B. O. & Zhang, Z. The applications of vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 49, 175–186 (2013).

    Google Scholar 

  81. Challa, R., Ahuja, A., Ali, J. & Khar, R. K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6, E329–E357 (2005).

    Google Scholar 

  82. Rosendahl, A. H. et al. Caffeine and caffeic acid inhibit growth and modify Estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin. Cancer Res. 21, 1877–1887 (2015).

    Google Scholar 

  83. Kulkarni, S. D. et al. Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res. 20, 218–227 (2006).

    Google Scholar 

  84. Arya, P. & Kumar, M. Chemoprevention by triticum aestivum of mouse skin carcinogenesis induced by DMBA and Croton oil – association with oxidative status. Asian Pac. J. Cancer Prev. 12, 143–148 (2011).

    Google Scholar 

Download references