Molecular identification and optimization of indole acetic acid production by Fusarium oxysporum AUMC 16,438 for biofertilizer application

molecular-identification-and-optimization-of-indole-acetic-acid-production-by-fusarium-oxysporum-aumc-16,438-for-biofertilizer-application
Molecular identification and optimization of indole acetic acid production by Fusarium oxysporum AUMC 16,438 for biofertilizer application

References

  1. Keswani, C. et al. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 104 (20), 8549–8565 (2020).

    Google Scholar 

  2. Li, L. & Kaderbek, T. CCS52A1/2 orchestrate hypocotyl endoreplication and elongation via PKN1/PKN2 pathways in Arabidopsis Thaliana. Trends Plant. Biology. 2, 1–14 (2025).

    Google Scholar 

  3. Khan, M. A., Khan, W., Anwar, S. & Azeem, M. A. Legacy effects in heathlands: decoupling above-and belowground responses to subsequent drought events. Trends Plant. Biology. 2, 1–3 (2025).

  4. Abdelhamid, S. A., Abo Elsoud, M. M., El-Baz, A., Nofal, A. M. & El-Banna, H. Y. Optimisation of Indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum. BMC Biotechnol. 24 (1), 46 (2024).

    Google Scholar 

  5. Qin, Q. et al. Auxin response factors (ARFs) differentially regulate rice antiviral immune response against rice Dwarf virus. PLoS Pathog. 16 (12), e1009118 (2020).

    Google Scholar 

  6. Alloun, W. et al. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: model development. Chemosphere 326, 138394 (2023).

    Google Scholar 

  7. Gravel, V., Antoun, H. & Tweddell, R. J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of Indole acetic acid (IAA). Soil Biol. Biochem. 39 (8), 1968–1977 (2007).

    Google Scholar 

  8. Li, Y. et al. Investigation of the oxidation mechanism of coal carboxyl functional groups using naphthalene acetic acid as a model compound. J. Phys. Chem. Solids. 208 (1), 113090. (2025).

  9. Sharma, A., Gupta, G. K., Chhabra, D., Pandey, P. & Shukla, P. Enhanced indole-3-acetic acid production by Enterobacter hormaechei APSB3 through heuristic artificial neural network and particle swarm optimisation. Environ. Sustain. 8, 289–304 (2025).

  10. Oyinlola, K. A., Ogundola, R. O. & Ogunleye, G. E. Biosynthesis, production optimization and antifungal property of indole-3-acetic acid from Pseudomonas aeruginosa ROO1S. International congresses of Turkish science and technology publishing. 351. (2025).

  11. Devi, T. S. et al. Optimized production and characterization of auxin by Bacillus amyloliquefaciens (TSP11) for plant growth promotion. J. Basic Microbiol. 65 (5), e70010 (2025).

    Google Scholar 

  12. Maor, R., Haskin, S., Levi-Kedmi, H. & Sharon, A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 70 (3), 1852–1854 (2004).

    Google Scholar 

  13. Yurekli, F., Geckil, H. & Topcuoglu, F. The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus carcajou under different culture conditions. Mycol. Res. 107 (3), 305–309 (2003).

    Google Scholar 

  14. Xin, G., Glawe, D. & Doty, S. L. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol. Res. 113 (9), 973–980 (2009).

    Google Scholar 

  15. Apine, O. & Jadhav, J. Optimization of medium for indole-3‐acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110 (5), 1235–1244 (2011).

    Google Scholar 

  16. Elsoud, M. M. A., Hasan, S. F. & Elhateir, M. M. Optimization of Indole-3-acetic acid production by Bacillus velezensis isolated from pyrus rhizosphere and its effect on plant growth. Biocatal. Agric. Biotechnol. 50, 102714 (2023).

    Google Scholar 

  17. Jahn, L., Hofmann, U. & Ludwig-Müller, J. Indole-3-acetic acid is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and-independent way and mediates the interaction with a non-host plant. Int. J. Mol. Sci. 22 (5), 2651 (2021).

    Google Scholar 

  18. Visconti, D. et al. Can Trichoderma-based biostimulants optimize N use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems? Agronomy 10 (1), 121 (2020).

    Google Scholar 

  19. Jin, X. et al. Rhizosphere growth-promoting bacteria enhance oat growth by improving microbial stability and soil organic matter in the saline soil of the Qaidam basin. Plants 14 (13), 1926 (2025).

    Google Scholar 

  20. Sridhar, D. et al. The soil Microbiome enhances Sesame growth and oil composition, and soil nutrients under saline conditions. Sci. Rep. 15 (1), 29432 (2025).

    Google Scholar 

  21. Nasraoui, A. H., Heikal, Y. M., Ali, M., Abidi, C. & Ammari, Y. Assessment of Paulownia tomentosa steud. Regeneration capacity through root cutting Diameters, growth hormone doses and soil types. Int. J. Plant. Biology. 16 (3), 73 (2025).

    Google Scholar 

  22. Boondaeng, A. et al. Biological conversion of agricultural wastes into indole-3-acetic acid by Streptomyces lavenduligriseus BS50-1 using a response surface methodology (RSM). ACS Omega. 8 (43), 40433–40441 (2023).

    Google Scholar 

  23. Todorović, I., Moënne-Loccoz, Y., Raičević, V., Jovičić-Petrović, J. & Muller, D. Microbial diversity in soils suppressive to fusarium diseases. Front. Plant Sci. 14, 1228749 (2023).

    Google Scholar 

  24. Hossain, M. M. et al. Biological management of Soil-Borne pathogens through tripartite rhizosphere interactions with plant Growth-Promoting fungi. Appl. Microbiol. 5 (4), 123 (2025).

    Google Scholar 

  25. Cheng, S. et al. Plant growth-promoting ability of mycorrhizal Fusarium strain KB-3 enhanced by its IAA producing endohyphal bacterium, Klebsiella aerogenes. Front. Microbiol. 13, 855399 (2022).

    Google Scholar 

  26. Vrabka, J. et al. Production and role of hormones during interaction of fusarium species with maize (Zea Mays L.) seedlings. Front. Plant Sci. 9, 1936 (2019).

    Google Scholar 

  27. Booth, C. Methods in Microbiology (Academic, 1971).

  28. Bose, A., Shah, D. & Keharia, H. Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 4 (2), 103–111 (2013).

    Google Scholar 

  29. Ahmad, F., Ahmad, I. & KHAN, M. S. Indole acetic acid production by the Indigenous isolates of azotobacter and fluorescent Pseudomonas in the presence and absence of Tryptophan. Turkish J. Biology. 29 (1), 29–34 (2005).

    Google Scholar 

  30. Ehmann, A. The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of Indole derivatives. J. Chromatogr. A. 132 (2), 267–276 (1977).

    Google Scholar 

  31. Jetiyanon, K. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin J. Sci. Technol. ;37(1) 29-36 (2015).

  32. Chatterjee, S., Dhole, A., Krishnan, A. A. & Banerjee, K. Mycotoxin monitoring, regulation and analysis in india: a success story. Foods 12 (4), 705 (2023).

    Google Scholar 

  33. Booth, C. Fusarium. Laboratory guide to the identification of the major species. (1977).

  34. Ali, Z. Computational Docking Studies of Phenyl Acetic Acid Derivatives with Biological Targets, DNA, Protein and Enzyme (2024).

  35. Sharma, M. et al. Detection and identification of bacteria intimately associated with fungi of the order sebacinales. Cell. Microbiol. 10 (11), 2235–2246 (2008).

    Google Scholar 

  36. De Tempe, J. The blotter method for seed health testing. (1963).

  37. Teale, W. D., Paponov, I. A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7 (11), 847–859 (2006).

    Google Scholar 

  38. Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 13 (6), 630–633 (1973).

    Google Scholar 

  39. Duncan, D. B. Multiple range and multiple F tests. Biometrics 11 (1), 1–42 (1955).

    Google Scholar 

  40. Wei, X. et al. The alterations of the synthetic pathway and metabolic flux of auxin indole-3-acetic acid (IAA) govern thermotolerance in Lentinula edodes mycelia subjected to heat stress. BioRxiv 2025 (04), 09–648085 (2025).

    Google Scholar 

  41. Etesami, H. & Glick, B. R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 281, 127602 (2024).

    Google Scholar 

  42. Kumar, N. V., Rajam, K. S. & Rani, M. E. Plant growth promotion efficacy of Indole acetic acid (IAA) produced by a Mangrove associated fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. Appl. Sci. 6 (11), 2692–2701 (2017).

    Google Scholar 

  43. Junaidi, A. R. & Bolhassan, M. H. Screening of Indole-3-Acetic acid (IAA) productions by endophytic fusarium oxysporum isolated from phyllanthus Niruri. Borneo J. Resource Sci. Technol. 7 (1), 56–59 (2017).

    Google Scholar 

  44. Gusmiaty, M., Restu, A. & Payangan, R. Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. In: IOP Conference Series: Earth and Environmental Science. vol. 343: IOP Publishing; : 012058. (2019).

  45. Hasan, H. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol. Hung. 49 (1), 105–118 (2002).

    Google Scholar 

  46. Ismaiel, A. A. & Papenbrock, J. Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5 (3), 492–537 (2015).

    Google Scholar 

  47. Perincherry, L., Lalak-Kańczugowska, J. & Stępień, Ł. Fusarium-produced Mycotoxins in plant-pathogen interactions. Toxins 11 (11), 664 (2019).

    Google Scholar 

  48. Jangpangi, D., Patni, B., Chandola, V. & Chandra, S. Medicinal plants in a changing climate: Understanding the links between environmental stress and secondary metabolite synthesis. Front. Plant Sci. 16, 1587337 (2025).

    Google Scholar 

  49. Anwar, M. F. et al. Unraveling the role of Auxin-Producing plant growth promoting rhizobacteria by modulating L-Tryptophan on yield and growth components of maize. J. Microbiol. Sci. 4 (2), 105–114 (2025).

    Google Scholar 

  50. Harikrishnan, H., Shanmugaiah, V. & Balasubramanian, N. Optimization for production of Indole acetic acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int. J. Curr. Microbiol. Appl. Sci. 3 (8), 158–171 (2014).

    Google Scholar 

  51. Chutima, R. & Lumyong, S. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis 56 (1), 35–44 (2012).

    Google Scholar 

  52. Kumla, J., Suwannarach, N., Bussaban, B., Matsui, K. & Lumyong, S. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from Northern Thailand. Ann. Microbiol. 64 (2), 707–720 (2014).

    Google Scholar 

  53. BİLKAY, I. S., Karakoç, Ş. & Aksöz, N. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turkish J. Biology. 34 (3), 313–318 (2010).

    Google Scholar 

  54. Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62 (1), 173–181 (2011).

    Google Scholar 

  55. Datta, C. & Basu, P. Indole acetic acid production by a rhizobium species from root nodules of a leguminous shrub, Cajanus Cajan. Microbiol. Res. 155 (2), 123–127 (2000).

    Google Scholar 

  56. Bunsangiam, S., Thongpae, N., Limtong, S. & Srisuk, N. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci. Rep. 11 (1), 13094 (2021).

    Google Scholar 

  57. Lustikaiswi, D. K., Yuliani, S., Annura, R. & Rahmadani, E. Tryptophan in banana peel (Musa paradisiaca) as an anti-dementia alternative treatment: a narrative review. JKKI: Jurnal Kedokteran Dan Kesehatan Indonesia. :175 – 81. (2021).

  58. Elsoud, M. M. A., Elhateir, M. M., Hasan, S. F., Sidkey, N. M. & Abdelhamid, S. A. Enhanced low-cost optimization strategies for antimicrobial rhamnolipid production by Pseudomonas aeruginosa PAO1. Bioresource Technol. Rep. 27, 101935 (2024).

    Google Scholar 

  59. Prajapati, S., Pandey, L. M. & Tiwari, P. Exploring Agro-Industrial Waste. In: Proceedings of 1st International Conference on Petroleum, Hydrogen and Decarbonization: ICPHD 2023. Springer Nature; : 67. (2025).

  60. Ghoreishi, G., Barrena, R. & Font, X. Using green waste as substrate to produce biostimulant and biopesticide products through solid-state fermentation. Waste Manage. 159, 84–92 (2023).

    Google Scholar 

  61. Fonseca, S., Radhakrishnan, D., Prasad, K. & Chini, A. Fungal production and manipulation of plant hormones. Curr. Med. Chem. 25 (2), 253–267 (2018).

    Google Scholar 

  62. Malik, D. K. & Sindhu, S. S. Production of Indole acetic acid by Pseudomonas sp.: effect of coinoculation with mesorhizobium sp. Cicer on nodulation and plant growth of Chickpea (Cicer arietinum). Physiol. Mol. Biology Plants. 17 (1), 25–32 (2011).

    Google Scholar 

Download references