References
-
Bhagat, A. A. S. et al. Microfluidics for cell separation. Med. Biol. Eng. Comput. 48, 999–1014 (2010).
-
Natu, R., Guha, S., Dibaji, S. A. R. & Herbertson, L. Assessment of flow through microchannels for inertia-based sorting: Steps toward microfluidic medical devices. Micromachines 11, 886 (2020).
-
Warkiani, M. E. et al. Malaria detection using inertial microfluidics. Lab Chip 15, 1101–1109 (2015).
-
Ding, T. et al. Image-activated cell sorting. Nat. Rev. Bioeng. 3, 890–907 (2025).
-
Muirhead, K. A., Horan, P. K. & Poste, G. Flow cytometry: present and future. Biotechnology 3, 337–356 (1985).
-
Zhang, T. et al. Passive microfluidic devices for cell separation. Biotechnol. Adv. 71, 108317 (2024).
-
Nasiri, R. et al. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications. Small 16, 2000171 (2020).
-
Xu, X. et al. Recent progress of inertial microfluidic-based cell separation. Analyst 146, 7070–7086 (2021).
-
Mansor, M. et al. Microfluidic Device for Both Active and Passive Cell Separation Techniques: A Review. Sens. Actuator. Rep. 9, 100277 (2024).
-
Krakos, A. Lab-on-chip technologies for space research—Current trends and prospects. Microchim. Acta 191, 31 (2024).
-
Buttkewitz, M. A., Heuer, C. & Bahnemann, J. Sensor integration into microfluidic systems: trends and challenges. Curr. Opin. Biotechnol. 83, 102978 (2023).
-
Zhao, Y. et al. Microfluidic actuated and controlled systems and application for lab-on-chip in space life science. Space Sci. Technol. 3, 0008 (2023).
-
Low, L. A. & Giulianotti, M. A. Tissue chips in space: Modeling human diseases in microgravity. Pharm. Res. 37, 8 (2020).
-
Cucinotta, F. A. & Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol 7, 431–435 (2006).
-
Cucinotta, F. A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS one 9, e96099 (2014).
-
Hu, S., Barzilla, J. E. & Semones, E. Acute radiation risk assessment and mitigation strategies in near future exploration spaceflights. Life Sci. Space Res. 24, 25–33 (2020).
-
Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. P. Natl. Acad. Sci. USA. 100, 13761–13766 (2003).
-
Strigari, L., Strolin, S., Morganti, A. G. & Bartoloni, A. Dose-effects models for space radiobiology: an overview on dose-effect relationships. Front. Public Health 9, 733337 (2021).
-
Shah, D. J., Sachs, R. K. & Wilson, D. J. Radiation-induced cancer: a modern view. Br. J. Radiol. 85, e1166–e1173 (2012).
-
Muhsen, I. N., Zubair, A. C., Niederwieser, T. & Hashmi, S. K. Space exploration and cancer: the risks of deeper space adventures. Leukemia 38, 1872–1875 (2024).
-
Guo, Z., Zhou, G. M. & Hu, W. T. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 32, 100828 (2022).
-
Kwok, M., Agathanggelou, A. & Stankovic, T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 143, 2123–2144 (2024).
-
Nishibuchi, I. & Tashiro, S. DNA double-strand break repair capacity and normal tissue toxicity induced by radiotherapy. J. Radiat. Res. 65, i52–i56 (2024).
-
Welsh, J. S., Karam, P. A. & Gale, R. P. Radiation exposure and space exploration. Leukemia 38, 1870–1871 (2024).
-
Jacob, P. et al. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. npj Microgravity 9, 51 (2023).
-
Fenaux, P. Myelodysplastic syndromes: state of the art pathology, diagnosis and management. Best Pract. Res. Clin. Haematol. 26, 307–308 (2013).
-
Leuraud, K. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2, e276–e281 (2015).
-
Gilbert, E. S. Ionising radiation and cancer risks: What have we learned from epidemiology?. Int. J. Radiat. Biol. 85, 467–482 (2009).
-
Preston, D. L. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat. Res. 137, S68–S97 (1994).
-
Folley, J. H., Borges, W. & Yamawaki, T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med 13, 311–321 (1952).
-
Committee for Evaluation of Space Radiation Cancer Risk Model, and National Research Council. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation. Washington, DC: National Academies Press, (2012).
-
Ghani, F. & Zubair, A. C. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 39, 1–11 (2025).
-
Durante, M. & Cucinotta, F. A. Physical basis of radiation protection in space travel. Rev Mod Phys 83, 1245–1281 (2011).
-
Warkiani, M. E. et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11, 134–148 (2016).
-
Macaraniag, C. et al. Benchmarking microfluidic and immunomagnetic platforms for isolating circulating tumor cells in pancreatic cancer. Lab Chip 25, 5292–5301 (2025).
-
Sun, J. et al. Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12, 3952–3960 (2012).
-
Park, E. S. et al. Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12, 1909–1919 (2016).
-
Varotto, E., Munaretto, E., Stefanachi, F., Della Torre, F. & Buldini, B. Diagnostic challenges in acute monoblastic/monocytic leukemia in children. Front. Pediatr. 10, 911093 (2022).
-
Saffman, P. G. T. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965).
-
Sun, L. et al. Recent advances in microfluidic technologies for separation of biological cells. Biomed. Microdevices 22, 55 (2020).
-
Khoo, B. L. et al. Liquid biopsy for minimal residual disease detection in leukemia using a portable blast cell biochip. NPJ Precis. Oncology 3, 30 (2019).
-
Belmonte, A. et al. Motion control in free-standing shape-memory actuators. Smart Mater. Struc. 27, 075013 (2018).
-
Sekhwama, M. et al. Integration of microfluidic chips with biosensors. Discov Appl Sci 6, 458 (2024).
-
Fragoso, A. et al. Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab Chip 11, 625–631 (2011).
-
An, L. et al. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip 18, 335–342 (2018).
-
Kuntaegowdanahalli, S. S., Bhagat, A. A. S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973–2980 (2009).
-
D’Auria, M. et al. Effect of Silybum marianum-derived nanocellulose as a sustainable functional filler on supramolecular structure of thermoplastic zein. Int. J. Biol. Macromol. 311, 143904 (2025).
