References
-
Budantsev, A. L., Prikhodko, V. A., Varganova, I. V. & Okovityi, S. V. Biological activity of Hypericum perforatum L. (Hypericaceae): a review. Pharm. Pharmacol. 9, 17–31 (2021).
-
Saddiqe, Z., Naeem, I. & Maimoona, A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 131, 511–521. https://doi.org/10.1016/j.jep.2010.07.034 (2010).
-
Nürk, N. M. & Blattner, F. R. Cladistic analysis of morphological characters in hypericum (Hypericaceae). Taxon 59, 1495–1507. https://doi.org/10.1002/tax.595014 (2010).
-
Dincel, D. et al. Investigation of antioxidant and anticholinesterase activity of Hypericum perforatum L. extracts. Turk. J. Anal. Chem. 7, 1–8 (2025).
-
Kisa, O., Oksuz, L., Servi, H. & Aysal, A. I. Antibacterial activity of Hypericum perforatum L. (St. John’s wort) extracts against Gram-positive bacteria and characterisation of its secondary metabolites. Nat. Prod. Res. 39, 1019–1026. https://doi.org/10.1080/14786419.2023.2291702 (2025).
-
Galeotti, N. Hypericum perforatum (St john’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 200, 136–146 (2017).
-
Zlatković, B. K., Bogosavljević, S. S., Radivojević, A. R. & Pavlović, M. A. Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): ethnobotanical evaluation and comparison. J. Ethnopharmacol. 151, 704–713 (2014).
-
Savikin, K., Dobrić, S., Tadić, V. & Zdunić, G. Antiinflammatory activity of ethanol extracts of hypericum perforatum L., H. barbatum Jacq., H. hirsutum L., H. richeri Vill. And H. Androsaemum L. in rats. Phytother Res. 21, 176–180 (2007).
-
Mennini, T. & Gobbi, M. The antidepressant mechanism of Hypericum perforatum. Life Sci. 75, 1021–1027 (2004).
-
Baytop, T. Türkiye’de bitkiler ile tedavi: geçmişte ve bugün (Nobel Tıp Kitabevleri, 1999).
-
Greeson, J. M., Sanford, B. & Monti, D. A. St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153, 402–414 (2001).
-
Brondz, I. & Brondz, A. Recent enhancement of the immunity in AIDS and other immunocompromised patients by Hyperforin an antibiotic from Hypericum perforatum L. (in vitro model) part I. J. Biophys. Chem. 3, 304–310 (2012).
-
Haake, L. R. et al. Viability and radiosensitivity of human tumor cells from breast and colon are influenced by Hypericum perforatum extract HP01. Int. J. Mol. Sci. 26, 622 (2025).
-
Mete, M. et al. Cytotoxic effects of Hypericum perforatum on glioblastoma cells by inducing oxidative stress, autophagy and apoptosis. Turk. Neurosurg. 35 https://doi.org/10.5137/1019-5149.JTN.45958-23.3 (2025).
-
You, M. K., Kim, H. J., Kook, J. H. & Kim, H. A. St. John’s wort regulates proliferation and apoptosis in MCF-7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway. Int. J. Mol. Sci. 19, 966 (2018).
-
Orčić, D. Z., Mimica-Dukić, N. M., Francišković, M. M., Petrović, S. S. & Jovin, E. Đ. Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L. Chem. Cent. J. 5, 34 (2011).
-
Tahirović, I. et al. Total phenolic content and antioxidant capacity in infusions of various herbal teas. Bull. Chem. Technol. Bosnia Herzegovina. 42, 51–55 (2014).
-
Yousefi, L. Impact of ultrasound pretreatment with different solvents on the antioxidant activity, phenolic and flavonoid compounds of the St. John’s wort (Hypericum perforatum L.) extract. J. Food Sci. Technol. Iran. 20, 126–139 (2023).
-
Kilibarda, S. et al. Ž. Phytochemical profile and biological activities of Rtanj’s Hypericum perforatum infusion tea and methanolic extracts: insights from LC-MS/MS and HPTLC–Bioautography. Plants 14, 1377 (2025).
-
Błońska-Sikora, E., Zielińska, A., Dobros, N., Paradowska, K. & Michalak, M. Polyphenol and flavonoid content and antioxidant activity of Hypericum perforatum L. (St. John’s Wort) extracts for potential pharmaceutical and cosmetic applications. Appl. Sci. 15, 2590 (2025).
-
Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).
-
Škrovánková, S., Mišurcová, L. & Machů, L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 67, 75–139 (2012).
-
Özay, C. & Pehlivan, E. Factors affecting the biosynthesis and accumulation of plant secondary metabolites. J. Fac. Pharm. Ankara. 48 (3), 1248–1263. https://doi.org/10.33483/jfpau.1488042 (2024).
-
Pandey, P. et al. A. A comprehensive review Uncovering the anticancerous potential of Genkwanin (plant-derived compound) in several human carcinomas. Open. Chem. 22, 20240003 (2024).
-
Narain, N. K. Spectroscopic studies of a less abundant flavone, Genkwanin. Spectrosc. Lett. 9, 865–875 (1976).
-
Kim, M. K. et al. Design of experiments-based optimization of flavonoids extraction from Daphne Genkwa flower buds and flavonoids contents at different blooming stages. Plants 11, 925 (2022).
-
Grayer, R. J. et al. External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry 43, 1041–1047 (1996).
-
Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B. & Fernandes-Ferreira, M. Phenolic antioxidant compounds produced by in vitro shoots of Sage (Salvia officinalis L). Plant. Sci. 162, 981–987 (2002).
-
Del Bano, M. J. et al. Phenolic diterpenes, flavones, and Rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J. Agric. Food Chem. 51, 4247–4253 (2003).
-
Kim, A. R. et al. Active components from Artemisia Iwayomogi displaying ONOO⁻ scavenging activity. Phytother Res. 18, 1–7 (2004).
-
Gao, Y. et al. Genkwanin inhibits Proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One. 9, e96741 (2014).
-
Cottigli, F. et al. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine 8, 302–305 (2001).
-
Suh, N. A. N. J. O. O., Luyengi, L., Fong, H. H., Kinghorn, A. D. & Pezzuto, J. M. Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a model. Anticancer Res. 15, 233–239 (1995).
-
Li, Y. et al. Genkwanin nanosuspensions: a novel and potential antitumor drug in breast carcinoma therapy. Drug Deliv. 24, 1491–1500 (2017).
-
Wang, X. et al. Antitumor and Immunomodulatory activity of Genkwanin on colorectal cancer in the APC^Min/+ mice. Int. Immunopharmacol. 29, 701–707 (2015).
-
Nurul-Islam, M., Ishita, I. J., Jung, H. A. & Choi, J. S. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem. Toxicol. 69, 55–62. https://doi.org/10.1016/j.fct.2014.03.042 (2014).
-
Munirah, M. et al. Plant vegetative stages and drying methods affect flavonoid content of Clinacanthus nutans extracts. Afr. J. Tradit Complement. Altern. Med. 15, 54–63 (2018).
-
Romero-Benavides, J. C., Atiencie-Valarezo, N. C. & Duarte-Casar, R. Flavonoid composition and antioxidant activity of Tragia volubilis L. methanolic extract. Plants 12, 3139; (2023). https://doi.org/10.3390/plants12173139
-
Çırak, C., Radušiene, J., Janulis, V., Ivanauskas, L. & Arslan, B. Chemical constituents of some hypericum species growing in Turkey. J. Plant. Biol. 50, 632–635 (2007).
-
Önlü, Ş. Efficacy of exogenous abscisic acid on cholinesterase enzyme activity and phenolic compound variability in Hypericum perforatum calli. Kahramanmaraş Sütçü İmam Univ. J. Agric. Nat. 28, 1083–1094. https://doi.org/10.18016/ksutarimdoga.vi.1614168 (2025).
-
Aigbe, F. R. et al. Alterations of haemodynamic parameters in spontaneously hypertensive rats by Aristolochia Ringens Vahl. (Aristolochiaceae). J. Tradit Complement. Med. 8, 72–80 (2018).
-
Lee, W. J. & Lee, S. H. Protocatechuic acid protects hepatocytes against hydrogen peroxide-induced oxidative stress. Curr. Res. Food Sci. 5, 222–227 (2022).
-
Kou, Y. et al. 4-Hydroxybenzoic acid restrains Nlrp3 inflammasome priming and activation via disrupting PU.1 DNA binding activity and direct antioxidation. Chem. Biol. Interact. 404, 111262 (2024).
-
Ullah, R. et al. Vanillic acid, a bioactive phenolic compound, counteracts LPS-induced neurotoxicity by regulating c-Jun N-terminal kinase in mouse brain. Int. J. Mol. Sci. 22, 361 (2020).
-
Nam, Y. J. & Lee, C. S. Protocatechuic acid inhibits Toll-like receptor-4-dependent activation of NF-κB by suppressing activation of the Akt, mTOR, JNK and p38-MAPK. Int. Immunopharmacol. 55, 272–281 (2018).
-
Mirzaei, S. et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: new hope in the fight against cancer. Pharmacol. Res. 171, 105759 (2021).
-
Ansari, M. A. et al. Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats. Life Sci. 165, 1–8 (2016).
-
Basque, A., Touaibia, M. & Martin, L. J. Sinapic and ferulic acid phenethyl esters increase the expression of steroidogenic genes in MA-10 tumor Leydig cells. Toxicol. Vitro. 86, 105505 (2023).
-
Roghani, M. et al. Alleviation of liver dysfunction, oxidative stress and inflammation underlies the protective effect of ferulic acid in methotrexate-induced hepatotoxicity. Drug Des. Devel. Ther. 14, 1933–1941. (2020).
-
Rahbardar, M. G., Ferns, G. A. & Mobarhan, M. G. Vanillic acid as a promising intervention for metabolic syndrome: preclinical studies. Iran. J. Basic. Med. Sci. 28, 141 (2025).
-
Díaz-Casado, M. E. et al. Oral β-RA induces metabolic rewiring leading to the rescue of diet-induced obesity. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167283 (2024).
-
Ono, K., Tsuji, M., Yamasaki, T. R. & Pasinetti, G. M. Anti-aggregation effects of phenolic compounds on α-synuclein. Molecules 25, 2444 (2020).
-
López-Herrador, S. et al. Natural hydroxybenzoic and hydroxycinnamic acids derivatives: mechanisms of action and therapeutic applications. Antioxidants 14, 711. https://doi.org/10.3390/antiox14060711 (2025).
-
Maisch, N. A., Bereswill, S. & Heimesaat, M. M. Antibacterial effects of vanilla ingredients provide novel treatment options for infections with multidrug-resistant bacteria–A recent literature review. Eur. J. Microbiol. Immunol. 12, 53–62. https://doi.org/10.1556/1886.2022.00015 (2022).
-
Skalkos, D. et al. The lipophilic extract of Hypericum perforatum exerts significant cytotoxic activity against T24 and NBT-II urinary bladder tumor cells. Planta Med. 71, 1030–1035 (2005).
-
Hostanska, K., Reichling, J., Bommer, S., Weber, M. & Saller, R. Aqueous ethanolic extract of St. John’s wort (Hypericum perforatum L.) induces growth Inhibition and apoptosis in human malignant cells in vitro. Pharmazie 57, 323–331 (2002).
-
Jain, S. S., Murch, S. J., Bird, R. P. & Saxena, P. K. Optimized St. John’s wort (Hypericum perforatum L.) germplasm lines exert cytotoxicity in HT-29 colon cancer cells via downregulation of NF-κB. J Complement. Integr. Med 7, 1-18 (2010).
-
Gibbs, C., Duggans, J. S., Malone, E. & Myles, E. L. Cytotoxic effects of hypericum extracts on breast and colorectal tumors. Cancer Res. 74, 5117–5117 (2014).
-
Martarelli, D. et al. Hypericum perforatum methanolic extract inhibits growth of human prostatic carcinoma cell line orthotopically implanted in nude mice. Cancer Lett. 210, 27–33 (2004).
-
Matić, I. Z. et al. Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models. Cytotechnology 73, 373–389 (2021).
-
Roscetti, G., Franzese, O., Comandini, A. & Bonmassar, E. Cytotoxic activity of Hypericum perforatum L. on K562 erythroleukemic cells: differential effects between methanolic extract and hypericin. Phytother Res. 18, 66–72 (2004).
-
Valletta, E., Rinaldi, A., Marini, M., Franzese, O. & Roscetti, G. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells. Phytother Res. 32, 1803–1811 (2018).
-
Mirmalek, S. A. et al. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell. Int. 16, 3 (2015).
-
Celik, E. Apoptotic and anti-inflammatory effects of Hypericum perforatum extract in human basal cell carcinoma TE 354. T cell line. Dicle Med. J. 48, 92–98 (2021).
-
Pazarcı, P. & Kaplan, H. M. In vitro apoptotic and antiproliferative activity of Hypericum perforatum extract on human osteosarcoma cell line. J. Med. Food. 28, 38–43 (2025).
-
Shiverick, K., Nseyo, O., Medrano, T., Mejia, M. & Nseyo, U. Antiproliferative effects of Hypericum perforatum L. extract involve induction of p21^CIP1 and Inhibition of Rb expression in human bladder cancer cells. Cancer Res. 67, 3392–3392 (2007).
-
Oezmen, A. et al. In vitro anti-neoplastic activity of the ethno-pharmaceutical plant Hypericum adenotrichum Spach endemic to Western Turkey. Oncol. Rep. 22, 845–852 (2009).
-
Li, Y. et al. Quality markers of Polygala fallax Hemsl Decoction based on qualitative and quantitative analysis combined with network Pharmacology and chemometric analysis. Phytochem Anal. 35, 1496–1508 (2024).
-
Zhao, X. et al. In vitro antioxidant, anti-mutagenic, anti-cancer and anti-angiogenic effects of Chinese bowl tea. J. Funct. Foods. 7, 590–598 (2014).
-
Orhan, I. E. et al. Assessment of antimicrobial and antiprotozoal activity of the Olive oil macerate samples of Hypericum perforatum and their LC–DAD–MS analyses. Food Chem. 138, 870–875 (2013).
-
Süntar, I., Oyardı, O., Akkol, E. K. & Ozçelik, B. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm. Biol. 54, 1065–1070 (2016).
-
Nezhad, S. K., Zenouz, A. T., Aghazadeh, M. & Kafil, H. S. Strong antimicrobial activity of Hypericum perforatum L. against oral isolates of Lactobacillus spp. Cell. Mol. Biol. 63, 58–62 (2017).
-
Uğur, Y. Extraction and quantification of melatonin in Cornelian Cherry (Cornus Mas L.) by ultra-fast liquid chromatography coupled to fluorescence detector (UFLC-FD). Acta Chromatogr. 35, 219–226. https://doi.org/10.1556/1326.2022.01052 (2023).
-
Uğur, Y. et al. Changes in the phenolic, melatonin, sugar contents and antioxidant capacity, depending on ripening stage in different Cornelian Cherry (Cornus Mas L.) fruits. Chem. Select. 9, e202304682. https://doi.org/10.1002/slct.202304682 (2024).
-
Uğur, Y. & Güzel, A. Determination of phytochemical content by LC-MS/MS, investigation of antioxidant capacity, and enzyme Inhibition effects of nettle (Urtica dioica). Eur. Rev. Med. Pharmacol. Sci. 27, 1793–1800. https://doi.org/10.26355/eurrev_202303_31540 (2023).
-
Zengin, R. et al. Sun-drying and melatonin treatment effects on apricot color, phytochemical, and antioxidant properties. Appl. Sci. 15, 508. https://doi.org/10.3390/app15020508 (2025).
-
Dursun, İ. et al. Antioxidant and antimicrobial activities of different extracts of Tragopogon dubius and Tragopogon porrifolium L. subsp. Longirostris: determination of their phytochemical contents by UHPLC-Orbitrap®-HRMS analysis. Food Biosci. 63, 105604 (2025).
-
Sharma, N., Arya, G., Kumari, R. M., Gupta, N. & Nimesh, S. Evaluation of anticancer activity of silver nanoparticles on the A549 human lung carcinoma cell lines through Alamar blue assay. Bio-protocol 9, e3131 (2019).
-
Wlodkowic, D., Skommer, J. & Darzynkiewicz, Z. Flow cytometry-based apoptosis detection. In Apoptosis: Methods and Protocols, Second Edition, 19–32 (Humana Press, 2009); https://doi.org/10.1007/978-1-60327-017-5_2
-
Pozarowski, P. & Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. In Checkpoint Controls and Cancer: Volume 2: Activation and Regulation Protocols, 301–311 (Humana Press, 2004); https://doi.org/10.1385/1-59259-811-0:301
-
Uğur, Y. et al. Comparative chemical and biological evaluation of urtica dioica extracts obtained by methanol and hexane: antioxidant, cytotoxic, apoptotic, and antimicrobial potentials. BMC Complement. Med. Ther. 26, 13. https://doi.org/10.1186/s12906-025-05211-3 (2026).
