References
-
Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 19, 456–474 (2022).
-
Qadura, M., Terenzi, D. C., Verma, S., Al-Omran, M. & Hess, D. A. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells 36, 161–171 (2018).
-
Jansen-Chaparro, S. et al. Statins and peripheral arterial disease: a narrative review. Front. Cardiovasc. Med. 8, 777016 (2021).
-
Dormandy, J. A. & Rutherford, R. B. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J. Vasc. Surg. 31, S1–296 (2000).
-
Gupta, R. & Losordo, D. W. Cell therapy for critical limb ischemia: moving forward one step at a time. Circ. Cardiovasc. Interv. 4, 2–5 (2011).
-
Shirbaghaee, Z., Hassani, M., Heidari Keshel, S. & Soleimani, M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res. Ther. 13, 462 (2022).
-
Park, G. et al. Identification of CD141+vasculogenic precursor cells from human bone marrow and their endothelial engagement in the arteriogenesis by co-transplantation with mesenchymal stem cells. Stem Cell Res. Ther. 15, 388 (2024).
-
Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204 (2007).
-
Lozano Navarro, L. V. et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res. Ther. 13, 345 (2022).
-
Bagno, L., Hatzistergos, K. E., Balkan, W. & Hare, J. M. Mesenchymal stem cell-based therapy for cardiovascular disease: Progress and challenges. Mol. Ther. 26, 1610–1623 (2018).
-
Guo, Y., Peng, Y., Zeng, H. & Chen, G. Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int. 2021, 9923566 (2021).
-
Yang, Q. et al. Combined transplantation of adipose tissue-derived stem cells and endothelial progenitor cells improve diabetic erectile dysfunction in a rat model. Stem Cells Int. 2020, 2154053 (2020).
-
Kim, D. Y. et al. Platelet-derived growth factor-BB priming enhances vasculogenic capacity of bone marrow-derived endothelial precursor like cells. Tissue Eng. Regen. Med. 20, 695–704 (2023).
-
Alev, C., Ii, M. & Asahara, T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid. Redox Signal. 15, 949–965 (2011).
-
MacAskill, M. G. et al. Robust revascularization in models of limb ischemia using a clinically translatable human stem cell-derived endothelial cell product. Mol. Ther. 26, 1669–1684 (2018).
-
Cheng, F. et al. Conversion of human adipose-derived stem cells into functional and expandable endothelial-like cells for cell-based therapies. Stem Cell Res. Ther. 9, 350 (2018).
-
Minamino, K. et al. Macrophage colony-stimulating factor (M-CSF), as well as granulocyte colony-stimulating factor (G-CSF), accelerates neovascularization. Stem Cells 23, 347–354 (2005).
-
Popescu, S. et al. Dual stem cell therapy improves the myocardial recovery post-infarction through reciprocal modulation of cell functions. Int. J. Mol. Sci. 22, 5631 (2021).
-
Kuo, T. K. et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134, 2111–2121 (2008).
-
Daneshmandi, L. et al. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 38, 1373–1384 (2020).
-
Kwon, J. W. et al. Mesenchymal stem cell-derived secretomes-enriched alginate/ extracellular matrix hydrogel patch accelerates skin wound healing. Biomater. Res. 27, 107 (2023).
-
Park, S. R. et al. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol. Ther. 26, 606–617 (2018).
-
Compagna, R. et al. Cell therapy in patients with critical limb ischemia. Stem Cells Int. 2015, 931420 (2015).
-
Hussein, E. A. Stem cell therapy for vascular disorders. Vasc. Endovasc. Rev. 1, 17-21 (2018).
-
Cartland S. P. et al. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL. Sci. Adv. 10, eadn8760 (2024).
-
Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regen. Med. 4, 22 (2019).
-
Benabid, A. & Peduto, L. Mesenchymal perivascular cells in immunity and disease. Curr. Opin. Immunol. 64, 50–55 (2020).
-
Lee, H. Huh, Y. H. & Kang, K. T. Mesenchymal stem cells potentiate the vasculogenic capacity of endothelial colony-forming cells under hyperglycemic conditions. Life 12, 469 (2022).
-
Iqbal, F. et al. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. Npj Regen. Med. 8, 45 (2023).
-
Rojas-Torres, M. et al. Unraveling the differential mechanisms of revascularization promoted by MSCs & ECFCs from adipose tissue or umbilical cord in a murine model of critical limb-threatening ischemia. J. Biomed. Sci. 31, 71 (2024).
-
Barros Ferreira, L. et al. Effects of tumor necrosis factor-α and interleukin-1β on human retinal endothelial cells. Cytokine 173, 156407 (2024).
-
Kim, D. Y. et al. Substance P ameliorates TNF-α-mediated impairment of human aortic vascular cells in vitro. Clin. Exp. Pharmacol. Physiol. 48, 1288–1297 (2021).
-
González-Flores, D., Rodríguez, A. B. & Pariente, J. A. TNFα-induced apoptosis in human myeloid cell lines HL-60 and K562 is dependent of intracellular ROS generation. Mol. Cell Biochem. 390, 281–287 (2014).
-
Honkura, N. et al. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat. Commun. 9, 2746 (2018).
-
Thurston, G. et al. Angiogenesis in mice with chronic airway inflammation: strain-dependent differences. Am. J. Pathol. 153, 1099–1112 (1998).
-
Zama, N. & Toda, S. Designer cell therapy for tissue regeneration. Inflamm. Regen. 44, 15 (2024).
-
Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. Npj Regen. Med. 3, 6 (2018).
-
Sanz-Nogués, C. & O’Brien, T. MSCs isolated from patients with ischemic vascular disease have normal angiogenic potential. Mol. Ther. 22, 1888–1889 (2014).
-
Kim, C. K. et al. Combination stem cell therapy using dental pulp stem cells and human umbilical vein endothelial cells for critical hindlimb ischemia. BMB Rep. 55, 336–341 (2022).
-
Amani, S. et al. Angiogenic effects of cell therapy within a biomaterial scaffold in a rat hind limb ischemia model. Sci. Rep. 11, 20545 (2021).
-
Kim, J. J. et al. Vascular regeneration and skeletal muscle repair induced by long-term exposure to SDF-1α derived from engineered mesenchymal stem cells after hindlimb ischemia. Exp. Mol. Med. 55, 2248–2259 (2023).
-
Nammian, P. et al. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy. Stem Cell Res. Ther. 12, 58 (2021).
