Mechanism and evolutionary divergence of a novel oxidized polyvinyl alcohol hydrolase in Stenotrophomonas rhizophila QL-P4

mechanism-and-evolutionary-divergence-of-a-novel-oxidized-polyvinyl-alcohol-hydrolase-in-stenotrophomonas-rhizophila-ql-p4
Mechanism and evolutionary divergence of a novel oxidized polyvinyl alcohol hydrolase in Stenotrophomonas rhizophila QL-P4

References

  1. Halima, N. B. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv. 6 (46), 39823–39832 (2016).

    Google Scholar 

  2. Leja, K. & Lewandowicz, G. Polymer biodegradation and biodegradable polymers – a review. Pol. J. Environ. Stud. 19 (2), 255–266 (2010).

    Google Scholar 

  3. Klomklang, W. et al. Biochemical and molecular characterization of a periplasmic hydrolase for oxidized Polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151 (Pt 4), 1255–1262 (2005).

    Google Scholar 

  4. Belay, M. Review on physicochemical modification of biodegradable plastic: Focus on agar and polyvinyl alcohol (PVA). Adv Mater Sci Eng. 2023, 4056020 (2023).

    Google Scholar 

  5. Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. 123 (9), 5612–5701 (2023).

    Google Scholar 

  6. Wei, Y. et al. Bioinformatics analysis and characterization of highly efficient Polyvinyl alcohol (PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4. Appl. Environ. Microbiol. 84 (1), e01898–e01817. https://doi.org/10.1128/aem (2018).

    Google Scholar 

  7. Mohod, A. V. & Gogate, P. R. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and Polyvinyl alcohol (PVA). Ultrason. Sonochem. 18 (3), 727–734 (2011).

    Google Scholar 

  8. Sun, W., Tian, J., Chen, L., He, S. & Wang, J. Improvement of biodegradability of PVA-containing wastewater by ionizing radiation pretreatment. Environ Sci. Pollut Res 19(8), 3178-3184 (2012).

  9. Sakai, K., Hamada, N. & Watanabe, Y. Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-Diketone hydrolase from Pseudomonas Sp. Agric. Biol. Chem. 50 (4), 989–996 (1986).

    Google Scholar 

  10. Suzuki, T., Ichihara, Y., Yamada, M. & Tonomura, K. Some characteristics of Pseudomonas0-3 which utilizes polyvinyl alcohol. Agric. Biol. Chem. 37(4), 747–756 (1973).

    Google Scholar 

  11. El-Naas, M. H., Mourad, A. H. & Surkatti, R. Evaluation of the characteristics of Polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida. Int. Biodeterior. Biodegrad 85, 413–420 (2013).

    Google Scholar 

  12. Qian, D., Du, G. & Chen, J. Isolation and culture characterization of a new Polyvinyl alcohol-degrading strain: Penicillium sp. WSH02-21. World J. Microbiol Biotechnol. 20 (6), 587–591 (2004).

    Google Scholar 

  13. Yamatsu, A., Matsumi, R., Atomi, H. & Imanaka, T. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl. Microbiol. Biotechnol. 72 (4), 804–811 (2006).

    Google Scholar 

  14. Shimao, M., Tamogami, T., Kishida, S. & Harayama, S. The gene PvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene PvaA. Microbiology 146(3), 649–657 (2000).

    Google Scholar 

  15. Matsumura, S., Tomizawa, N., Toki, A., Nishikawa, K. & Toshima, K. Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules 32(23), 7753–7761 (1999).

    Google Scholar 

  16. Bian, H. et al. Biodegradation of Polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int. J. Biol. Macromol. 124, 10–16 (2019).

    Google Scholar 

  17. Kawai, F. & Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84(2), 227–237 (2009).

    Google Scholar 

  18. Hu, X., Mamoto, R., Shimomura, Y., Kimbara, K. & Kawai, F. Cell surface structure enhancing uptake of Polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch. Microbiol. 188 (3), 235–241 (2007).

    Google Scholar 

  19. von Haugwitz, G. et al. Synthesis of modified poly (vinyl alcohol) s and their degradation using an enzymatic cascade. Angew Chem. Int. Ed. https://doi.org/10.1002/anie.202216962 (2023).

    Google Scholar 

  20. Yang, Y. et al. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli. J. Ind. Microbiol. Biotechnol. 39(1), 99–104 (2012).

    Google Scholar 

  21. Yang, Y. et al. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol. ChemBioChem 15, 1882–1886 (2014).

    Google Scholar 

  22. Hu, X. et al. The Pva Operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl. Microbiol. Biotechnol. 78 (4), 685–693 (2008).

    Google Scholar 

  23. Tang, X. et al. The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res. 22 (14), 2857–2858 (1994).

    Google Scholar 

  24. Froger, A. & Hall, J. E. Transformation of plasmid Dna into E. coli using the heat shock method. Vis Exp 6, e253 (2007).

  25. Finley, J. H. Spectrophotometric determination of polyvinyl alcohol in paper coatings. Anal. Chem. 33(12), 1925–1927 (1961).

    Google Scholar 

  26. Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Leslie, H. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U S A. 69 (8), 2110–2114 (1972).

    Google Scholar 

  27. Heller, M. & Hanahan, D. J. Erythrocyte membrane-bound enzymes ATPase, phosphatase and adenylate kinase in human, bovine and porcine erythrocytes. Biochim. Et Biophys. Acta (BBA)-Biomembranes 255(1), 239–250 (1972).

    Google Scholar 

  28. Thamwiriyasati, N., Powthongchin, B., Kittiworakarn, J., Katzenmeier, G. & Angsuthanasombat, C. Esterase activity of Bordetella pertussis CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. FEMS Microbiol. Lett. 304(2), 183–190 (2010).

    Google Scholar 

  29. Bugnon, M. et al. SwissDock 2024: major enhancements for small-molecule docking with attracting cavities and AutoDock Vina. Nucleic Acids Res. 52(W1), W324–W332 (2024).

    Google Scholar 

  30. Röhrig, U. F., Goullieux, M., Bugnon, M. & Zoete, V. Attracting cavities 2.0: improving the flexibility and robustness for small-molecule docking. J. Chem. Inf. Model. 63(12), 3925–3940 (2023).

    Google Scholar 

  31. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50 (D1), D439–D444 (2022).

    Google Scholar 

  32. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596 (7873), 583–589 (2021).

    Google Scholar 

  33. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37 (4), 420–423 (2019).

    Google Scholar 

  34. Elmi, F. et al. Stereoselective esterase from Pseudomonas putida IFO12996 reveals α/β hydrolase folds for D-β-acetylthioisobutyric acid synthesis. J. Bacteriol. 187(24), 8470–8476 (2005).

    Google Scholar 

  35. Hameleers, L. et al. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: A bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. Biotechnol. Biofuels 14(1), 127 (2021).

    Google Scholar 

  36. Zhang, R., Zhang, S., Li, C., Cui, B. & Zhou, D. Transboundary intercellular communication mechanisms in the treatment of Polyvinyl alcohol (PVA) wastewater by Geotrichum candidum enhanced activated sludge. Water Res. 57 (12), 12345–12356 (2025).

    Google Scholar 

  37. Yan, N. Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys. 44, 257–283 (2015).

    Google Scholar 

  38. Pacelli, C. et al. Survival and redox activity of Friedmanniomyces endolithicus, an Antarctic endemic black meristematic fungus, after gamma rays exposure. Fungal Biol. 122 (12), 1222–1227 (2018).

    Google Scholar 

  39. Pacelli, C. et al. The effect of protracted X-ray exposure on cell survival and metabolic activity of fast and slow growing fungi capable of melanogenesis. Environ. Microbiol. Rep. 10 (3), 255–263 (2018).

    Google Scholar 

  40. Koma, D. et al. Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli strains that can be applied in the generation of aromatic-compound-producing bacteria. Appl. Environ. Microbiol. 86 (14), e00525–e00520. https://doi.org/10.1128/aem.00525-20 (2020).

    Google Scholar 

  41. Schuster, L. A. & Reisch, C. R. Plasmids for controlled and tunable high-level expression in E. coli. Appl. Environ. Microbiol. 88 (22), e00922–e00939. https://doi.org/10.1128/aem.00939-22 (2022).

    Google Scholar 

  42. López, J. et al. Build your bioprocess on a solid strain—β-carotene production in recombinant Saccharomyces cerevisiae. Front Bioeng. Biotech‌ 7, 171 (2019).

    Google Scholar 

  43. Wang, J. et al. Rational multienzyme architecture design with iMARS. Cell 188 (5), 1349–1362. https://doi.org/10.1016/j.cell.2024.12.029 (2025).

    Google Scholar 

  44. Yang, Y., Liu, L., Li, J., Du, G. & Chen, J. Biochemical characterization and high-level production of oxidized Polyvinyl alcohol hydrolase from Sphingopyxis sp. 113P3 expressed in Methylotrophic Pichia pastoris. Bioprocess. Biosyst Eng. 37 (5), 777–782 (2014).

    Google Scholar 

  45. Holmquist, M. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr Protein Pept. Sc‌. 1 (2), 209–235 (2000).

    Google Scholar 

  46. Komiya, D. et al. Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensis. Appl. Environ. Microbiol. 83, e01251–e01217. https://doi.org/10.1128/AEM.01251-17 (2017).

    Google Scholar 

  47. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580(7802), 216–219 (2020).

    Google Scholar 

  48. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72 (2), 317–364 (2008).

    Google Scholar 

  49. Berlemont, R. The supragenic organization of glycoside hydrolase encoding genes reveals distinct strategies for carbohydrate utilization in bacteria. F Microbiol. 14, 1179206 (2023).

    Google Scholar 

  50. Barba-Cedillo, V. & Montanier, C. Y. Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem. 67(3), 629–638 (2023).

    Google Scholar 

Download references