Optimizing immersion time and frequency in a twin-bottle temporary immersion system for mass production of Zingiber officinale Roscoe

optimizing-immersion-time-and-frequency-in-a-twin-bottle-temporary-immersion-system-for-mass-production-of-zingiber-officinale-roscoe
Optimizing immersion time and frequency in a twin-bottle temporary immersion system for mass production of Zingiber officinale Roscoe

References

  1. Jiang, D. et al. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 24(1), 30 (2023).

    Google Scholar 

  2. Das, S., Das, A. K. & Manda, S. C. Evaluation of antimicrobial activities of various solvent extracts of ginger rhizome peels and whole ginger rhizome without peels. World J. Pharm. Res. 6, 1450–1468 (2017).

    Google Scholar 

  3. Nyulas, K. I. et al. Cardiovascular effects of herbal products and their interaction with antihypertensive drugs—Comprehensive review. Int. J. Mol. Sci. 25(12), 6388 (2024).

    Google Scholar 

  4. Shen, C. L. et al. Ginger alleviates mechanical hypersensitivity and anxio-depressive behavior in rats with diabetic neuropathy through beneficial actions on gut microbiome composition, mitochondria, and neuroimmune cells of colon and spinal cord. Nutr. Res. 124, 73–84 (2024).

    Google Scholar 

  5. Kamoka, H. M. & Elengoe, A. An investigation on use of traditional medicine during COVID-19 and post-COVID-19. Int. J. Adv. Life Sci. Res. 7, 89–102 (2024).

    Google Scholar 

  6. Ghasemzadeh, A., Jaafar, H. Z. & Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15(6), 4324–4333 (2010).

    Google Scholar 

  7. Subbarayudu, S. et al. Microsporogenesis and pollen formation in Zingiber officinale Roscoe. Plant Syst. Evol. 300(4), 619–632 (2014).

    Google Scholar 

  8. Nair, K. P. Turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.)-World’s invaluable medicinal spices. In The Agronomy and Economy of Turmeric and Ginger 271–283 (Springer, 2019)

  9. Dhanik, J., Arya, N. & Nand, V. A. Review on Zingiber officinale. J. Pharmacogn. Phytochem. 6(3), 174–184 (2017).

    Google Scholar 

  10. Ukaew, S., Weerachaipichasgul, W., Motong, N., Chantam, P. & Yaowarat, W. Implication of soil carbon changes on the greenhouse gas emissions of pickled ginger: A case study of crop rotation cultivation in Northern Thailand. Energy Ecol. Environ. 8(4), 370–387 (2023).

    Google Scholar 

  11. Sharma, T. R. & Singh, B. M. High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Rep. 17(1), 68–72 (1997).

    Google Scholar 

  12. Zheng, Y., Liu, Y., Ma, M. & Xu, K. Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe). Acta Physiol. Plant. 30(4), 513–519 (2008).

    Google Scholar 

  13. Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 11(2), 320 (2021).

    Google Scholar 

  14. Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Micropropagation of ginger (Zingiber officinale Roscoe) ‘Bentong’ and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plant 10(4), 630 (2021).

    Google Scholar 

  15. Zhao, H., Xiao, M. H., Zhong, Y. & Wang, Y. Q. Leaf epidermal micromorphology of Zingiber (Zingiberaceae) from China and its systematic significance. PhytoKeys. 190, 131 (2022).

    Google Scholar 

  16. Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Zeatin–auxin synergy and growing media optimization enhanced micropropagation, acclimatization, and antioxidant properties of ‘Bentong’ ginger (Zingiber officinale Roscoe). Biocatal. Agric. Biotechnol. 67, 103653 (2025).

    Google Scholar 

  17. Paek, K. Y., Chakrabarty, D. & Hahn, E. J. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult. 81(3), 287–300 (2005).

    Google Scholar 

  18. Watt, M. P. The status of temporary immersion system (TIS) technology for plant micropropagation. Afr. J. Biotechnol. 11(76), 14025–14035 (2012).

    Google Scholar 

  19. Carlo, A., Tarraf, W., Lambardi, M. & Benelli, C. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 11(12), 2414 (2021).

    Google Scholar 

  20. Wongsa, T., Kongbangkerd, A. & Kunakhonnuruk, B. Optimal growth and biomass of Centella asiatica using a twin-bottle temporary immersion bioreactor. Horticulture 9(6), 638 (2023).

    Google Scholar 

  21. Wilken D. et al. Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In Liquid Culture Systems for In Vitro Plant Propagation 525–537 (Springer, Dordrecht, 2005).

  22. Georgiev, V., Schumann, A., Pavlov, A. & Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 14(6), 607–621 (2014).

    Google Scholar 

  23. Kunakhonnuruk, B., Kongbangkerd, A. & Inthima, P. Improving large-scale biomass and plumbagin production of Drosera communis A. St.-Hil. by temporary immersion system. Ind. Crops Prod. 137, 197–202 (2019).

    Google Scholar 

  24. Kunakhonnuruk, B., Inthima, P. & Kongbangkerd, A. Improving bacoside yield of Bacopa monnieri (L.) Wettst. in temporary immersion system by increasing immersion time and lowering the intervals. Ind. Crops Prod. 191, 115859 (2023).

    Google Scholar 

  25. Cheel, J. et al. Free radical scavenging activity and secondary metabolites from in vitro cultures of Sanicula graveolens. Z. Naturforsch. 62(7–8), 555–562 (2007).

    Google Scholar 

  26. Ibrahim, R. The potential of bioreactor technology for large-scale plant micropropagation. In VI International Symposium on Production and Establishment of Micropropagated Plants, Vol. 1155, 573–584 (2017).

  27. Golle, D. P. et al. Temporary immersion bioreactors: Establishment of cassava. J. Agric. Sci. 11(4), 176–181 (2019).

    Google Scholar 

  28. Sharma, M., Koul, A., Ahuja, A. & Mallubhotla, S. Suitability of bench scale bioreactor system for shoot biomass production and bacoside biosynthesis from Bacopa monnieri (L.). Eng. Life Sci. 19(8), 584–590 (2019).

    Google Scholar 

  29. Rayirath, U. P. et al. CCC and prohexadione-Ca enhance rhizome growth and lateral bud production in rhubarb (Rheum rhabarbarum L.). J. Plant Growth Regul. 28(2), 137–146 (2009).

    Google Scholar 

  30. Wang, H., Li, H., Liu, F. & Xiao, L. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Sci. Hortic. 119(2), 113–116 (2009).

    Google Scholar 

  31. Medina, R., Burgos, A., Difranco, V., Mroginski, L. & Cenóz, P. Effects of chlorocholine chloride and paclobutrazol on cassava (Manihot esculenta Crantz cv. Rocha) plant growth and tuberous root quality. Agriscientia 29(1), 51–58 (2012).

    Google Scholar 

  32. Arif, T., Bhoomika, H. R., Ganapathi, M., Nataraj, S. K. & Nadukeri, S. Influence of growth retardant and nutrient levels on ginger (Zingiber officinale Rosc.) in soilless culture under protected structure. Mod. Phytomorphol. 15(6), 134–140 (2022).

    Google Scholar 

  33. Sami, R. A., Abdulmalik, M. M., Usman, I. S. & Musa, L. Micropropagation of ginger using a Temporary Immersion Bioreactor (TIB) system. Afr. J. Biotechnol. 24(11), 237–245 (2025).

    Google Scholar 

  34. Martínez Rivero, A. et al. Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell Tissue Organ Cult. 141(2), 447–453 (2020).

    Google Scholar 

  35. Orozco-Ortiz, C., Sánchez, L., Araya-Mattey, J., Vargas-Solórzano, I. & Araya-Valverde, E. BIT® bioreactor increases in vitro multiplication of quality shoots in sugarcane (Saccharum spp. variety LAICA 04–809). Plant Cell Tissue Organ Cult. 152(1), 115–128 (2023).

    Google Scholar 

  36. Carvalho, L. S. O., Ozudogru, E. A., Lambardi, M. & Paiva, L. V. Temporary immersion system for micropropagation of tree species: A bibliographic and systematic review. Not. Bot. Horti. Agrobo. 47(2), 269–277 (2019).

    Google Scholar 

  37. Etienne, H. & Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69(3), 215–231 (2002).

    Google Scholar 

  38. Roels, S. et al. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 82(1), 57–66 (2005).

    Google Scholar 

  39. Dewir, Y. H., Chakrabarty, D., Ali, M. B., Hahn, E. J. & Paek, K. Y. Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ. Exp. Bot. 58(1–3), 93–99 (2006).

    Google Scholar 

  40. Frómeta, M. O., Escalona, M. M. M., Teixeira, S. J. A., Pina, M. D. T. & Daquinta, G. M. A. In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tissue Organ Cult. 129(3), 543–551 (2017).

    Google Scholar 

  41. Akdemir, H. et al. Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult. 117(1), 65–76 (2014).

    Google Scholar 

  42. Gutiérrez, L. G., López-Franco, R. & Morales-Pinzón, T. Micropropagation of Guadua angustifolia Kunth (Poaceae) using a temporary immersion system RITA®. Afr. J. Biotechnol. 15(28), 1503–1510 (2016).

    Google Scholar 

  43. Ramos-Castellá, A., Iglesias-Andreu, L. G., Bello-Bello, J. & Lee-Espinosa, H. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell. Dev. Biol. Plant 50(5), 576–581 (2014).

    Google Scholar 

  44. Välimäki, S. et al. Production of Norway spruce embryos in a temporary immersion system (TIS). In Vitro Cell. Dev. Biol. Plant 56(4), 430–439 (2020).

    Google Scholar 

  45. Daurov, D. et al. The impact of the growth regulators and cultivation conditions of temporary immersion systems (TISs) on the morphological characteristics of potato explants and microtubers. Agronomy 14(8), 1782 (2024).

    Google Scholar 

  46. An, C. H., Kim, Y. W., Moon, H. K. & Yi, J. S. Effects of in vitro culture types on regeneration and acclimatization of yellow poplar (Liriodendron tulipifera L.) from somatic embryos. J. Plant Biotechnol. 43(1), 110–118 (2016).

    Google Scholar 

  47. Jesionek, A. M. et al. Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Organ Cult. 131(1), 51–64 (2017).

    Google Scholar 

  48. Escalona, M. et al. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18(9), 743–748 (1999).

    Google Scholar 

  49. Sreedhar, R. V., Venkatachalam, L. & Neelwarne, B. Hyperhydricity-related morphologic and biochemical changes in Vanilla (Vanilla planifolia). J. Plant Growth Regul. 28(1), 46–57 (2009).

    Google Scholar 

  50. Vives, K. et al. Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®). Plant Cell Tissue Organ Cult. 131(1), 195–199 (2017).

    Google Scholar 

  51. Bello-Bello, J. J., Cruz-Cruz, C. A. & Pérez-Guerra, J. C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell. Dev. Biol. Plant 55(3), 313–320 (2019).

    Google Scholar 

  52. Aragón, C. E. et al. Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell Dev. Biol. Plant 46(1), 89–94 (2010).

    Google Scholar 

  53. Jova, M. C., Kosky, R. G. & Cuellar, E. E. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L ‘Pacala Duclos’). Base 15(4), 515–521 (2011).

    Google Scholar 

  54. Ilczuk, A., Winkelmann, T., Richartz, S., Witomska, M. & Serek, M. In vitro propagation of Hippeastrum × chmielii Chm.—Influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tissue Organ Cult. 83(3), 339–346 (2005).

    Google Scholar 

  55. Arencibia, A. D. et al. An approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by temporary immersion bioreactors (TIBs). Am. J. Plant Sci. 4, 1022–1028 (2013).

    Google Scholar 

  56. Karimi, M. et al. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. S. Afr. J. Bot. 121, 394–401 (2019).

    Google Scholar 

  57. Sengupta, D. K., Maity, T. K. & Dasgupta, B. Effect of growth regulators on growth and rhizome production of ginger (Zingiber officinale Rosc.) in the hilly region of Darjeeling district. J. Crop Weed 4(3), 10–13 (2008).

    Google Scholar 

  58. Velayutham, T. & Parthiban, S. Role of growth regulators and chemicals on growth, yield and quality traits of ginger (Zingiber officinalis Rosc.). Int. J. Hortic. 3(16) (2013).

  59. Maruthi, M. N., Muniyappa, V., Green, S. K., Colvin, J. & Hanson, P. Resistance of tomato and sweet-pepper genotypes to tomato leaf curl Bangalore virus and its vector Bemisia tabaci. Int. J. Pest Manag. 49(4), 297–303 (2003).

    Google Scholar 

  60. Hussain, I. et al. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. Bot. 38(2), 275 (2006).

    Google Scholar 

  61. Yang ShuHan, Y. S. & Yeh DerMing, Y. D. In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell Tissue Organ Cult. 93, 201–207 (2008).

    Google Scholar 

  62. Hwang, H. D. et al. Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agronomy 12(2), 346 (2022).

    Google Scholar 

  63. Hazarika, B. N. Acclimatization of tissue-cultured plants. Curr. Sci. 85(12), 1704–1712 (2003).

    Google Scholar 

  64. Aragón, C. E. et al. Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plant 58(1), 29–38 (2014).

    Google Scholar 

  65. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15(3) (1962).

  66. Stanly, C. & Keng, C. L. Micropropagation of Curcuma zedoaria roscoe and Zingiber zerumbet smith. Biotechnol. 6(4), 555–560 (2007).

    Google Scholar 

  67. Duncan, D. B. Multiple range and multiple F test. Biometrics 11, 1–42 (1955).

    Google Scholar 

Download references