References
-
Jiang, D. et al. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 24(1), 30 (2023).
-
Das, S., Das, A. K. & Manda, S. C. Evaluation of antimicrobial activities of various solvent extracts of ginger rhizome peels and whole ginger rhizome without peels. World J. Pharm. Res. 6, 1450–1468 (2017).
-
Nyulas, K. I. et al. Cardiovascular effects of herbal products and their interaction with antihypertensive drugs—Comprehensive review. Int. J. Mol. Sci. 25(12), 6388 (2024).
-
Shen, C. L. et al. Ginger alleviates mechanical hypersensitivity and anxio-depressive behavior in rats with diabetic neuropathy through beneficial actions on gut microbiome composition, mitochondria, and neuroimmune cells of colon and spinal cord. Nutr. Res. 124, 73–84 (2024).
-
Kamoka, H. M. & Elengoe, A. An investigation on use of traditional medicine during COVID-19 and post-COVID-19. Int. J. Adv. Life Sci. Res. 7, 89–102 (2024).
-
Ghasemzadeh, A., Jaafar, H. Z. & Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15(6), 4324–4333 (2010).
-
Subbarayudu, S. et al. Microsporogenesis and pollen formation in Zingiber officinale Roscoe. Plant Syst. Evol. 300(4), 619–632 (2014).
-
Nair, K. P. Turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.)-World’s invaluable medicinal spices. In The Agronomy and Economy of Turmeric and Ginger 271–283 (Springer, 2019)
-
Dhanik, J., Arya, N. & Nand, V. A. Review on Zingiber officinale. J. Pharmacogn. Phytochem. 6(3), 174–184 (2017).
-
Ukaew, S., Weerachaipichasgul, W., Motong, N., Chantam, P. & Yaowarat, W. Implication of soil carbon changes on the greenhouse gas emissions of pickled ginger: A case study of crop rotation cultivation in Northern Thailand. Energy Ecol. Environ. 8(4), 370–387 (2023).
-
Sharma, T. R. & Singh, B. M. High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Rep. 17(1), 68–72 (1997).
-
Zheng, Y., Liu, Y., Ma, M. & Xu, K. Increasing in vitro microrhizome production of ginger (Zingiber officinale Roscoe). Acta Physiol. Plant. 30(4), 513–519 (2008).
-
Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 11(2), 320 (2021).
-
Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Micropropagation of ginger (Zingiber officinale Roscoe) ‘Bentong’ and evaluation of its secondary metabolites and antioxidant activities compared with the conventionally propagated plant. Plant 10(4), 630 (2021).
-
Zhao, H., Xiao, M. H., Zhong, Y. & Wang, Y. Q. Leaf epidermal micromorphology of Zingiber (Zingiberaceae) from China and its systematic significance. PhytoKeys. 190, 131 (2022).
-
Zahid, N. A., Jaafar, H. Z. & Hakiman, M. Zeatin–auxin synergy and growing media optimization enhanced micropropagation, acclimatization, and antioxidant properties of ‘Bentong’ ginger (Zingiber officinale Roscoe). Biocatal. Agric. Biotechnol. 67, 103653 (2025).
-
Paek, K. Y., Chakrabarty, D. & Hahn, E. J. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult. 81(3), 287–300 (2005).
-
Watt, M. P. The status of temporary immersion system (TIS) technology for plant micropropagation. Afr. J. Biotechnol. 11(76), 14025–14035 (2012).
-
Carlo, A., Tarraf, W., Lambardi, M. & Benelli, C. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 11(12), 2414 (2021).
-
Wongsa, T., Kongbangkerd, A. & Kunakhonnuruk, B. Optimal growth and biomass of Centella asiatica using a twin-bottle temporary immersion bioreactor. Horticulture 9(6), 638 (2023).
-
Wilken D. et al. Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In Liquid Culture Systems for In Vitro Plant Propagation 525–537 (Springer, Dordrecht, 2005).
-
Georgiev, V., Schumann, A., Pavlov, A. & Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 14(6), 607–621 (2014).
-
Kunakhonnuruk, B., Kongbangkerd, A. & Inthima, P. Improving large-scale biomass and plumbagin production of Drosera communis A. St.-Hil. by temporary immersion system. Ind. Crops Prod. 137, 197–202 (2019).
-
Kunakhonnuruk, B., Inthima, P. & Kongbangkerd, A. Improving bacoside yield of Bacopa monnieri (L.) Wettst. in temporary immersion system by increasing immersion time and lowering the intervals. Ind. Crops Prod. 191, 115859 (2023).
-
Cheel, J. et al. Free radical scavenging activity and secondary metabolites from in vitro cultures of Sanicula graveolens. Z. Naturforsch. 62(7–8), 555–562 (2007).
-
Ibrahim, R. The potential of bioreactor technology for large-scale plant micropropagation. In VI International Symposium on Production and Establishment of Micropropagated Plants, Vol. 1155, 573–584 (2017).
-
Golle, D. P. et al. Temporary immersion bioreactors: Establishment of cassava. J. Agric. Sci. 11(4), 176–181 (2019).
-
Sharma, M., Koul, A., Ahuja, A. & Mallubhotla, S. Suitability of bench scale bioreactor system for shoot biomass production and bacoside biosynthesis from Bacopa monnieri (L.). Eng. Life Sci. 19(8), 584–590 (2019).
-
Rayirath, U. P. et al. CCC and prohexadione-Ca enhance rhizome growth and lateral bud production in rhubarb (Rheum rhabarbarum L.). J. Plant Growth Regul. 28(2), 137–146 (2009).
-
Wang, H., Li, H., Liu, F. & Xiao, L. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Sci. Hortic. 119(2), 113–116 (2009).
-
Medina, R., Burgos, A., Difranco, V., Mroginski, L. & Cenóz, P. Effects of chlorocholine chloride and paclobutrazol on cassava (Manihot esculenta Crantz cv. Rocha) plant growth and tuberous root quality. Agriscientia 29(1), 51–58 (2012).
-
Arif, T., Bhoomika, H. R., Ganapathi, M., Nataraj, S. K. & Nadukeri, S. Influence of growth retardant and nutrient levels on ginger (Zingiber officinale Rosc.) in soilless culture under protected structure. Mod. Phytomorphol. 15(6), 134–140 (2022).
-
Sami, R. A., Abdulmalik, M. M., Usman, I. S. & Musa, L. Micropropagation of ginger using a Temporary Immersion Bioreactor (TIB) system. Afr. J. Biotechnol. 24(11), 237–245 (2025).
-
Martínez Rivero, A. et al. Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell Tissue Organ Cult. 141(2), 447–453 (2020).
-
Orozco-Ortiz, C., Sánchez, L., Araya-Mattey, J., Vargas-Solórzano, I. & Araya-Valverde, E. BIT® bioreactor increases in vitro multiplication of quality shoots in sugarcane (Saccharum spp. variety LAICA 04–809). Plant Cell Tissue Organ Cult. 152(1), 115–128 (2023).
-
Carvalho, L. S. O., Ozudogru, E. A., Lambardi, M. & Paiva, L. V. Temporary immersion system for micropropagation of tree species: A bibliographic and systematic review. Not. Bot. Horti. Agrobo. 47(2), 269–277 (2019).
-
Etienne, H. & Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69(3), 215–231 (2002).
-
Roels, S. et al. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 82(1), 57–66 (2005).
-
Dewir, Y. H., Chakrabarty, D., Ali, M. B., Hahn, E. J. & Paek, K. Y. Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ. Exp. Bot. 58(1–3), 93–99 (2006).
-
Frómeta, M. O., Escalona, M. M. M., Teixeira, S. J. A., Pina, M. D. T. & Daquinta, G. M. A. In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tissue Organ Cult. 129(3), 543–551 (2017).
-
Akdemir, H. et al. Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult. 117(1), 65–76 (2014).
-
Gutiérrez, L. G., López-Franco, R. & Morales-Pinzón, T. Micropropagation of Guadua angustifolia Kunth (Poaceae) using a temporary immersion system RITA®. Afr. J. Biotechnol. 15(28), 1503–1510 (2016).
-
Ramos-Castellá, A., Iglesias-Andreu, L. G., Bello-Bello, J. & Lee-Espinosa, H. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell. Dev. Biol. Plant 50(5), 576–581 (2014).
-
Välimäki, S. et al. Production of Norway spruce embryos in a temporary immersion system (TIS). In Vitro Cell. Dev. Biol. Plant 56(4), 430–439 (2020).
-
Daurov, D. et al. The impact of the growth regulators and cultivation conditions of temporary immersion systems (TISs) on the morphological characteristics of potato explants and microtubers. Agronomy 14(8), 1782 (2024).
-
An, C. H., Kim, Y. W., Moon, H. K. & Yi, J. S. Effects of in vitro culture types on regeneration and acclimatization of yellow poplar (Liriodendron tulipifera L.) from somatic embryos. J. Plant Biotechnol. 43(1), 110–118 (2016).
-
Jesionek, A. M. et al. Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Organ Cult. 131(1), 51–64 (2017).
-
Escalona, M. et al. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18(9), 743–748 (1999).
-
Sreedhar, R. V., Venkatachalam, L. & Neelwarne, B. Hyperhydricity-related morphologic and biochemical changes in Vanilla (Vanilla planifolia). J. Plant Growth Regul. 28(1), 46–57 (2009).
-
Vives, K. et al. Comparison of different in vitro micropropagation methods of Stevia rebaudiana B. including temporary immersion bioreactor (BIT®). Plant Cell Tissue Organ Cult. 131(1), 195–199 (2017).
-
Bello-Bello, J. J., Cruz-Cruz, C. A. & Pérez-Guerra, J. C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In Vitro Cell. Dev. Biol. Plant 55(3), 313–320 (2019).
-
Aragón, C. E. et al. Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell Dev. Biol. Plant 46(1), 89–94 (2010).
-
Jova, M. C., Kosky, R. G. & Cuellar, E. E. Effect of liquid media culture systems on yam plant growth (Dioscorea alata L ‘Pacala Duclos’). Base 15(4), 515–521 (2011).
-
Ilczuk, A., Winkelmann, T., Richartz, S., Witomska, M. & Serek, M. In vitro propagation of Hippeastrum × chmielii Chm.—Influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tissue Organ Cult. 83(3), 339–346 (2005).
-
Arencibia, A. D. et al. An approach for micropropagation of blueberry (Vaccinium corymbosum L.) plants mediated by temporary immersion bioreactors (TIBs). Am. J. Plant Sci. 4, 1022–1028 (2013).
-
Karimi, M. et al. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. S. Afr. J. Bot. 121, 394–401 (2019).
-
Sengupta, D. K., Maity, T. K. & Dasgupta, B. Effect of growth regulators on growth and rhizome production of ginger (Zingiber officinale Rosc.) in the hilly region of Darjeeling district. J. Crop Weed 4(3), 10–13 (2008).
-
Velayutham, T. & Parthiban, S. Role of growth regulators and chemicals on growth, yield and quality traits of ginger (Zingiber officinalis Rosc.). Int. J. Hortic. 3(16) (2013).
-
Maruthi, M. N., Muniyappa, V., Green, S. K., Colvin, J. & Hanson, P. Resistance of tomato and sweet-pepper genotypes to tomato leaf curl Bangalore virus and its vector Bemisia tabaci. Int. J. Pest Manag. 49(4), 297–303 (2003).
-
Hussain, I. et al. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. Bot. 38(2), 275 (2006).
-
Yang ShuHan, Y. S. & Yeh DerMing, Y. D. In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid medium and temporary immersion systems. Plant Cell Tissue Organ Cult. 93, 201–207 (2008).
-
Hwang, H. D. et al. Temporary immersion bioreactor system as an efficient method for mass production of in vitro plants in horticulture and medicinal plants. Agronomy 12(2), 346 (2022).
-
Hazarika, B. N. Acclimatization of tissue-cultured plants. Curr. Sci. 85(12), 1704–1712 (2003).
-
Aragón, C. E. et al. Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plant 58(1), 29–38 (2014).
-
Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15(3) (1962).
-
Stanly, C. & Keng, C. L. Micropropagation of Curcuma zedoaria roscoe and Zingiber zerumbet smith. Biotechnol. 6(4), 555–560 (2007).
-
Duncan, D. B. Multiple range and multiple F test. Biometrics 11, 1–42 (1955).
