References
-
Tsimidou, M. Z. On the importance of the starting material choice and analytical procedures adopted when developing a strategy for the nanoencapsulation of saffron (Crocus sativus L.) bioactive antioxidants. Antioxidants (Basel Switzerland) 12(2), 220 (2023).
-
Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L. & Georgiyants, V. Biologically active compounds and Pharmacological activities of species of the genus crocus: A review. Phytochemistry 162, 56–89 (2019).
-
Arzi, L. & Hoshyar, R. Saffron anti-metastatic properties, ancient spice novel application. Crit. Rev. Food Sci. Nutr. 62(14), 3939–3950 (2022).
-
Demurtas, O. C. et al. Candidate enzymes for saffron Crocin biosynthesis are localized in multiple cellular compartments. Plant Physiol. 177(3), 990–1006 (2018).
-
Cerdá-Bernad, D. & Frutos, M. J. Saffron floral By-Products as novel sustainable vegan ingredients for the functional and nutritional improvement of traditional wheat and spelt breads. Foods (Basel Switzerland) 12(12), 2380 (2023).
-
Agarwal, N., Kolba, N., Jung, Y., Cheng, J. & Tako, E. Saffron (Crocus sativus L.) flower water extract disrupts the cecal Microbiome, brush border membrane Functionality, and morphology in vivo (Gallus gallus). Nutrients 14(1), 220 (2022).
-
Basílio, N. & Pina, F. Chemistry and photochemistry of anthocyanins and related compounds: A thermodynamic and kinetic approach. Molecules (Basel Switzerland) 21(11), 1502 (2016).
-
Moratalla-López, N., Bagur, M. J., Lorenzo, C., Salinas, M. & Alonso, G. L. Bioactivity and bioavailability of the major metabolites of crocus sativus L. Flower. Molecules (Basel Switzerland). 24, 15 (2019).
-
Dhar, M. K., Sharma, M., Bhat, A., Chrungoo, N. K. & Kaul, S. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief. Funct. Genomics. 16 (6), 336–347 (2017).
-
Lu, Z. et al. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant. Physiol. Biochemistry: PPB. 217, 109268 (2024).
-
Jia, H. et al. HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. Plant. Journal: cell. Mol. Biology. 113 (1), 127–144 (2023).
-
Zhao, Y. W., Wang, C. K., Huang, X. Y. & Hu, D. G. Genome-Wide analysis of the glutathione S-Transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in Apple. Genes 12, 11 (2021).
-
Sappl, P. G. et al. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant. Journal: cell. Mol. Biology. 58 (1), 53–68 (2009).
-
Zhu, J. H. et al. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena Cambodiana. Plant. Physiol. Biochemistry: PPB. 104, 304–311 (2016).
-
Van Der Kraak, L. et al. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in Gastrointestinal cancers. J. Immunother. Cancer. 4, 65 (2016).
-
Licciardello, C. et al. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of citrus sinensis (L.) Osbeck. BMC Plant Biol. 14, 39 (2014).
-
Islam, S., Rahman, I. A., Islam, T. & Ghosh, A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: gaining an insight to their physiological and stress-specific roles. PloS One 12(11), e0187504 (2017).
-
Yuan, S. et al. Genome-Wide identification and expression analysis of GST genes during Light-Induced anthocyanin biosynthesis in Mango (Mangifera indica L). Plants (Basel Switzerland). 13, 19 (2024).
-
Kou, M. et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant. Physiol. Biochemistry: PPB. 135, 395–403 (2019).
-
Kitamura, S., Shikazono, N. & Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant. Journal: cell. Mol. Biology. 37 (1), 104–114 (2004).
-
Conn, S., Curtin, C., Bézier, A., Franco, C. & Zhang, W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J. Exp. Bot. 59 (13), 3621–3634 (2008).
-
Kitamura, S., Akita, Y., Ishizaka, H., Narumi, I. & Tanaka, A. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. J. Plant Physiol. 169 (6), 636–642 (2012).
-
Cheng, J. et al. A small indel mutation in an anthocyanin transporter causes variegated colouration of Peach flowers. J. Exp. Bot. 66 (22), 7227–7239 (2015).
-
Qian, X. et al. Single-molecule real-time transcript sequencing identified flowering regulatory genes in crocus sativus. BMC Genom. 20 (1), 857 (2019).
-
Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 12, 42 (2014).
-
King, D. J. et al. A Systematic Evaluation of High-Throughput Sequencing Approaches to Identify Low-Frequency Single Nucleotide Variants in Viral Populations. Viruse, 12(10). (2020).
-
Green, M. R. & Sambrook, J. Rapid Amplification of Sequences from the 3’ Ends of mRNAs: 3’-RACE. Cold Spring Harbor protocols, 2019(5). (2019).
-
Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45 (D1), D200–d203 (2017).
-
Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51 (D1), D384–d388 (2023).
-
Madeira, F. et al. The EMBL-EBI search and sequence analysis tools apis in 2019. Nucleic Acids Res. 47 (W1), W636–w641 (2019).
-
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 (7), 3022–3027 (2021).
-
Udvardi, M. K., Czechowski, T. & Scheible, W. R. Eleven golden rules of quantitative RT-PCR. Plant. cell. 20 (7), 1736–1737 (2008).
-
Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics Bioinf. Biomathematics. 3 (3), 71–85 (2013).
-
Allocati, N., Masulli, M., Di Ilio, C. & Federici, L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7 (1), 8 (2018).
-
Lee, J., Durst, R. W. & Wrolstad, R. E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88 (5), 1269–1278 (2005).
-
Marrs, K. A., Alfenito, M. R., Lloyd, A. M. & Walbot, V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375 (6530), 397–400 (1995).
-
Alfenito, M. R. et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant. cell. 10 (7), 1135–1149 (1998).
-
Kanamori, A. et al. Antioxidative and antiglycative stress activities of selenoglutathione diselenide. Pharmaceuticals (Basel Switzerland). 17, 8 (2024).
-
Taulavuori, E., Tahkokorpi, M., Taulavuori, K. & Laine, K. Anthocyanins and glutathione S-transferase activities in response to low temperature and Frost hardening in vaccinium myrtillus (L). J. Plant Physiol. 161 (8), 903–911 (2004).
-
Zachariah, V. T., Walsh-Sayles, N. & Singh, B. R. Isolation, purification, and characterization of glutathione S-transferase from oat (Avena sativa) seedlings. J. Protein Chem. 19 (6), 425–430 (2000).
-
Li, B. et al. Genomic analysis of the glutathione S-Transferase family in Pear (Pyrus communis) and functional identification of PcGST57 in anthocyanin accumulation. International J. Mol. Sciences 23(2), 746 (2022).
-
Sylvestre-Gonon, E. et al. Functional, structural and biochemical features of plant Serinyl-Glutathione transferases. Front. Plant Sci. 10, 608 (2019).
-
Sun, L., Yin, J., Du, H., Liu, P. & Cao, C. Characterisation of GST genes from the hyphantria cunea and their response to the oxidative stress caused by the infection of hyphantria cunea nucleopolyhedrovirus (HcNPV). Pestic. Biochem. Physiol. 163, 254–262 (2020).
-
Gullner, G., Komives, T., Király, L. & Schröder, P. Glutathione S-Transferase enzymes in Plant-Pathogen interactions. Front. Plant Sci. 9, 1836 (2018).
-
Kumar, S., Trivedi, P. K. & Glutathione, S-T. Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 9, 751 (2018).
-
Sawant, A. V., Srivastava, S., Prassanawar, S. S., Bhattacharyya, B. & Panda, D. Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin. Biochem. Pharmacol. 163, 32–45 (2019).
-
Yan, N. et al. Crocin promotes ferroptosis in gastric cancer via the Nrf2/GGTLC2 pathway. Front. Pharmacol. 16, 1527481 (2025).
-
Zhou, G., Li, L., Lu, J., Li, J. & Yao, C. Flower cultivation regimes affect apocarotenoid accumulation and gene expression during the development of saffron stigma. Hortic. Environ. Biotechnol. 61, 473–484 (2020).
