References
-
Jafari, S. M., Doost, A. S., Nasrabadi, M. N., Boostani, S. & Van der Meeren, P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci. Technol. 98, 117–128 (2020).
-
NikbakhtNasrabadi, M., SedaghatDoost, A. & Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 118, 106789 (2021).
-
Ghorbani, A., Rafe, A., Hesarinejad, M. A. & Lorenzo, J. M. Impact of pH on the Physicochemical, Structural, and Techno-Functional properties of Sesame protein isolate. Food Sci. Nutr. 13, e4760 (2025a).
-
Mir, N. A., Riar, C. S. & Singh, S. Improvement in the functional properties of Quinoa (chenopodium Quinoa) protein isolates after the application of controlled heat-treatment: effect on structural properties. Food Struct. 28, 100189 (2021).
-
Shen, Y., Tang, X. & Li, Y. Drying methods affect physicochemical and functional properties of Quinoa protein isolate. Food Chem. 339, 127823–127832 (2021).
-
Saeid, S., Mollakhalili-meybodi, N., AkramiMohajeri, F., Madadizadeh, F. & KhaliliSadrabad, E. The effect of gamma irradiation treatment on Quinoa flour: quantification of saponin, phytic acid, antioxidant activity, and oxidative properties. Radiat. Phys. Chem. 216, 111429 (2024).
-
Maradini-Filho, A. Quinoa: nutritional aspects. J. Nutraceuticaland Food Sci. 2, 3 (2017).
-
Esmaeili, M., Rafe, A., Shahidi, S. A. & Hasan-Saraei, A. G. Functional properties of rice Bran protein isolate at different pHLevels. Cereal Chem. 93, 1: 58–63 (2016).
-
Jamshidian, H. & Rafe, A. Complex coacervate of wheat germ protein/high methoxy pectin in encapsulation of d-limonene. Chem. Biol. Technol. Agric. 11, 60 (2024).
-
Vonde, J. V. D., Janssen, F., Wouters, A. G. B. & Delcour, J. A. Air-water interfacial and foaming properties of native protein in aqueous Quinoa (Chenopodium Quinoa Willd.) extracts: impact of pH- and heat-induced aggregation. Food Hydrocoll. 144, 108945 (2023).
-
Filho, A. M. M. et al. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630 (2017).
-
Sharma, G. & Lakhawat, S. Nutrition facts and functional potential of Quinoa (chenopodium Quinoa), an ancient Andean grain: A review. J. Pharmacognosy Phytochemistry. 6, 1488–1489 (2017).
-
Domonkos, M., Tich´a, P., Trejbal, J. & Demo, P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 11, 4809 (2021).
-
Yoshida, S., Hagiwara, K., Hasebe, T. & Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 233, 99–107 (2013).
-
Bußler, S., Ehlbeck, J. & Schlüter, O. K. Pre-drying treatment of plant related tissues using plasma processed air: impact on enzyme activity and quality attributes of cut Apple and potato. Innov. Food Sci. Emerg. Technol. 40, 78–86 (2017).
-
Rout, S. & Srivastav, P. P. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: comparative study on structural, rheological and techno-functional characteristics. Food Chem. 447, 138914 (2024).
-
Rout, S. & Srivastav, P. P. Dielectric Barrier Discharge Cold plasma-modified Pea Protein Nanoparticles: Enhancing Functional and Thermal Properties for Food and Biopolymer Applications (Sustainable Food Technology, 2025).
-
Vedaei, S. & Dara, A. Surveying the utilization of cold plasma and plasma-activated water on food pigments, bioactive compounds, enzymes, vitamins, fatty acid, and essential oils: Considerations, mechanisms, and future trends. Food Chem. : X. 28, 102509 (2025).
-
Rout, S., Panda, P. K., Dash, P., Srivastav, P. P. & Hsieh, C. T. Cold Plasma-Induced modulation of protein and lipid macromolecules: A review. Int. J. Mol. Sci. 26 (4), 1564 (2025).
-
Rout, S. & Srivastav, P. P. Effect of cold plasma on the technological and functional modification of plant proteins and enzymes. Innov. Food Sci. Emerg. Tech. 88, 103447 (2023).
-
Jiang, Y. H., Cheng, J. H. & Sun, D. W. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci. Technol. 98, 129–139 (2020).
-
Takai, E. et al. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J. Phys. D Appl. Phys. 47, 285403 (2014).
-
Afshari, R. & Hosseini, H. Non-thermal plasma as a new food preservation method, its present and future prospect. Arch. Adv. Biosci. 5, 116–120 (2014).
-
Pankaj, S. et al. Physicochemical characterization of plasmatreated sodium caseinate film. Food Res. Int. 66, 438–444 (2014).
-
Ommat Mohammadi, E. et al. Effects of various types of vacuum cold plasma treatment on the chemical and functional properties of Whey protein isolate with a focus on interfacial properties. Colloids Interfaces. 7 (3), 54 (2023).
-
sadat Hosseini, M., Farahmandfar, R., Motamedzadegan, A., Mollakhalili-meybodi, N. & Lai, W. F. Modifying the Techno-functional characteristics of Quinoa protein isolate by atmospheric cold plasma (ACP). Food Hydrocolloids 169, 111583–111591 (2025).
-
AOAC. Official Methods of Analysis 15th edn (Association of official Analytical Chemists-Washangton, DC, USA, 2002).
-
Yüzer, M. and HüseyinGençcelep. Sesame Seed Protein: Amino Acid, Functional, and Physicochemical Profiles. foods and raw materials 11 (1). (2023).
-
Chalamaiah, M., Esparza, Y., Temelli, F. & Wu, J. Physicochemical and functional properties of livetins fraction from Hen egg yolk. Food Bioscience. 18, 38–45 (2017).
-
He, X. et al. Effect of hydrothermal treatment on the structure and functional properties of Quinoa protein isolate. Foods 11 (19), 2954 (2022).
-
Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J. & Rivera, M. Study of some physicochemical and functional properties of Quinoa (Chenopodium Quinoa Willd) protein isolates. J. Agric. Food Chem. 56 (12), 4745–4750 (2008).
-
Elsohaimy, S. A., Refaay, T. M. & Zaytoun, M. A. M. Physicochemical and functional properties of Quinoa protein isolate. Annals Agricultural Sci. 60 (2), 297–305 (2015).
-
Liu, S. et al. Structural properties of Quinoa protein isolate: impact of neutral to high alkaline extraction pH. Foods 12 (13), 2589 (2023).
-
Achouri, A., Nail, V. & Boye, J. I. Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Res. Int. 46 (1), 360–369 (2012).
-
Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S. & Mirmoghtadaie, L. Quinoa protein: composition, structure and functional properties. Food Chem. 299, 125161 (2019).
-
Haque, M. A., Timilsena, Y. P. & Adhikari, B. Food proteins, structure, and function. (2016).
-
Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W. & Siebenmorgen, T. Preparation and functional properties of rice Bran protein isolate. J. Agric. Food Chem. 47 (2), 411–416 (1999).
-
Tan, L., Hua, X., Yin, L., Jia, X. & Liu, H. Effect of Corona discharge cold plasma on the structure and emulsification properties of soybean protein isolate. Food Hydrocoll. 156, 110337 (2024).
-
Li, B., Xie, Y. & Guo, Q. Thermal acid hydrolysis modulates the solubility of Quinoa protein: the formation of different types of protein aggregates. Food Hydrocoll. 151, 109825 (2024).
-
Ghorbani, A., Rafe, A., Hesarinejad, M. A. & Lorenzo, J. M. Effect of pH and protein to polysaccharide ratio on coacervation of Sesame protein isolate-Tragacanth gum: Structure-rheology function. Int. J. Biol. Macromol. 13 (4), 143911 (2025b).
-
Zhao, H., Shen, C., Wu, Z., Zhang, Z. & Xu, C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J. Food Biochem., 44 (4), e13157–e13162 (2020).
-
Ma, K. K. et al. Functional performance of plant proteins. Foods 11 (4), 594 (2022).
-
Cano-Sarmiento, C. T. D. I. et al. H S García, and G F Gutiérrez-López. Zeta potential of food matrices. Food Eng. Rev. 10, 113–138 (2018).
-
Tang, C. H., Xin & Sun A comparative study of physicochemical and conformational properties in three vicilins from phaseolus legumes: implications for the Structure–function relationship. Food Hydrocoll. 25 (3), 315–324 (2011).
-
Rafe, A. et al. Structure-property relations of β-lactoglobulin/κ-carrageenan mixtures in aqueous foam. Colloids Surf., A. 640, 128267 (2022).
-
Tang, Q., Roos, Y. H. & Song Miao. Plant protein versus dairy proteins: A pH-Dependency investigation on their structure and functional properties. Foods 12 (2), 368 (2023).
-
Wang, Y., Li, B., Guo, Y., Liu, C., Liu, J., Tan, B., … Jiang, L. (2022). Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates.
-
Cui, H., Li, S., Roy, D., Guo, Q. & Ye, A. Modifying Quinoa protein for enhanced functional properties and digestibility: A review. Curr. Res. Food Sci. 7, 100604 (2023).
-
Luo, L., Cheng, L., Zhang, R. & Yang, Z. Impact of high-pressure homogenization on physico-chemical, structural, and rheological properties of Quinoa protein isolates. Food Struct. 32, 100265 (2022).
-
Luo, L., Yang, Z., Wang, H., Ashokkumar, M. & Hemar, Y. Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of Quinoa protein isolate dispersions at acidic, neutral and alkaline pHs. Ultrason. Sonochem. 91, 106232 (2022).
-
Zhang, Y., Kong, Y., Xu, W., Yang, Z. & Bao, Y. Electron beam irradiation alters the physicochemical properties of Chickpea proteins and the peptidomic profile of its digest. Molecules 28 (16), 6161 (2023).
-
Chen, X. et al. Effect of Xanthoceras sorbifolium bunge leaves saponins on the foaming properties of Whey protein isolate at varying pHs: correlation between interface, rheology, and foaming characteristics. Lwt 187, 115316 (2023).
-
Mäkinen, O. E., Zannini, E., Koehler, P. & Arendt, E. K. Heat-denaturation and aggregation of Quinoa (Chenopodium Quinoa) globulins as affected by the pH value. Food Chem. 196, 17–24 (2016).
-
Bu, F., Nayak, G., Bruggeman, P., Annor, G. & Ismail, B. P. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chem. 371, 131135 (2022).
-
Ashraf, S., Saeed, S. M. G., Sayeed, S. A. & Ali, R. Impact of microwave treatment on the functionality of cereals and legumes. Int. J. Agric. Biology 14 (3), 365–370 (2012).
-
Inglett, G. E., Chen, D. & Liu, S. X. Antioxidant activities of selective gluten free ancient grains. Food Nutr. Sci. 6 (7), 612–621 (2015).
-
Tang, Y. et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium Quinoa Willd. Genotypes. Food Chem. 166, 380–388 (2015).
-
Sharafodin, H. & Soltanizadeh, N. Potential application of DBD plasma technique for modifying structural and physicochemical properties of soy protein isolate. Food Hydrocoll. 122, 107077 (2022).
-
Akharume, F. U., Aluko, R. E. & Adedeji, A. A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 20 (1), 198–224 (2021).
-
Sofi, S. A. et al. Irradiation-induced modifications of Apple seed protein isolate: exploring techno-functional, structural, thermal, and morphological characteristics. Radiat. Phys. Chem. 225, 112139 (2024).
-
Zhang, S. et al. Effect of steam explosion treatments on the functional properties and structure of camellia (Camellia oleifera Abel.) seed cake protein. Food Hydrocoll. 93, 189–197 (2019).
-
Vera, A., Valenzuela, M. A., Yazdani-Pedram, M., Tapia, C. & Abugoch, L. Conformational and physicochemical properties of Quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrason. Sonochem. 51, 186–196 (2019).
-
Luo, L., Zhang, R., Palmer, J., Hemar, Y. & Yang, Z. Impact of high hydrostatic pressure on the gelation behavior and microstructure of Quinoa protein isolate dispersions. ACS Food Sci. Technol. 1 (11), 2144–2151 (2021).
-
Sun, W., Cui, C., Zhao, M., Zhao, Q. & Yang, B. Effects of composition and oxidation of proteins on their solubility, aggregation and proteolytic susceptibility during processing of Cantonese sausage. Food Chem. 124 (1), 336–341 (2011).
