Enhancing the techno-functional properties of Quinoa protein isolate through cold plasma treatment: a comprehensive study on pH effects

enhancing-the-techno-functional-properties-of-quinoa-protein-isolate-through-cold-plasma-treatment:-a-comprehensive-study-on-ph-effects
Enhancing the techno-functional properties of Quinoa protein isolate through cold plasma treatment: a comprehensive study on pH effects

References

  1. Jafari, S. M., Doost, A. S., Nasrabadi, M. N., Boostani, S. & Van der Meeren, P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci. Technol. 98, 117–128 (2020).

    Google Scholar 

  2. NikbakhtNasrabadi, M., SedaghatDoost, A. & Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 118, 106789 (2021).

    Google Scholar 

  3. Ghorbani, A., Rafe, A., Hesarinejad, M. A. & Lorenzo, J. M. Impact of pH on the Physicochemical, Structural, and Techno-Functional properties of Sesame protein isolate. Food Sci. Nutr. 13, e4760 (2025a).

    Google Scholar 

  4. Mir, N. A., Riar, C. S. & Singh, S. Improvement in the functional properties of Quinoa (chenopodium Quinoa) protein isolates after the application of controlled heat-treatment: effect on structural properties. Food Struct. 28, 100189 (2021).

    Google Scholar 

  5. Shen, Y., Tang, X. & Li, Y. Drying methods affect physicochemical and functional properties of Quinoa protein isolate. Food Chem. 339, 127823–127832 (2021).

  6. Saeid, S., Mollakhalili-meybodi, N., AkramiMohajeri, F., Madadizadeh, F. & KhaliliSadrabad, E. The effect of gamma irradiation treatment on Quinoa flour: quantification of saponin, phytic acid, antioxidant activity, and oxidative properties. Radiat. Phys. Chem. 216, 111429 (2024).

    Google Scholar 

  7. Maradini-Filho, A. Quinoa: nutritional aspects. J. Nutraceuticaland Food Sci. 2, 3 (2017).

    Google Scholar 

  8. Esmaeili, M., Rafe, A., Shahidi, S. A. & Hasan-Saraei, A. G. Functional properties of rice Bran protein isolate at different pHLevels. Cereal Chem. 93, 1: 58–63 (2016).

    Google Scholar 

  9. Jamshidian, H. & Rafe, A. Complex coacervate of wheat germ protein/high methoxy pectin in encapsulation of d-limonene. Chem. Biol. Technol. Agric. 11, 60 (2024).

    Google Scholar 

  10. Vonde, J. V. D., Janssen, F., Wouters, A. G. B. & Delcour, J. A. Air-water interfacial and foaming properties of native protein in aqueous Quinoa (Chenopodium Quinoa Willd.) extracts: impact of pH- and heat-induced aggregation. Food Hydrocoll. 144, 108945 (2023).

    Google Scholar 

  11. Filho, A. M. M. et al. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630 (2017).

    Google Scholar 

  12. Sharma, G. & Lakhawat, S. Nutrition facts and functional potential of Quinoa (chenopodium Quinoa), an ancient Andean grain: A review. J. Pharmacognosy Phytochemistry. 6, 1488–1489 (2017).

    Google Scholar 

  13. Domonkos, M., Tich´a, P., Trejbal, J. & Demo, P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl. Sci. 11, 4809 (2021).

    Google Scholar 

  14. Yoshida, S., Hagiwara, K., Hasebe, T. & Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 233, 99–107 (2013).

    Google Scholar 

  15. Bußler, S., Ehlbeck, J. & Schlüter, O. K. Pre-drying treatment of plant related tissues using plasma processed air: impact on enzyme activity and quality attributes of cut Apple and potato. Innov. Food Sci. Emerg. Technol. 40, 78–86 (2017).

    Google Scholar 

  16. Rout, S. & Srivastav, P. P. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: comparative study on structural, rheological and techno-functional characteristics. Food Chem. 447, 138914 (2024).

    Google Scholar 

  17. Rout, S. & Srivastav, P. P. Dielectric Barrier Discharge Cold plasma-modified Pea Protein Nanoparticles: Enhancing Functional and Thermal Properties for Food and Biopolymer Applications (Sustainable Food Technology, 2025).

  18. Vedaei, S. & Dara, A. Surveying the utilization of cold plasma and plasma-activated water on food pigments, bioactive compounds, enzymes, vitamins, fatty acid, and essential oils: Considerations, mechanisms, and future trends. Food Chem. : X. 28, 102509 (2025).

  19. Rout, S., Panda, P. K., Dash, P., Srivastav, P. P. & Hsieh, C. T. Cold Plasma-Induced modulation of protein and lipid macromolecules: A review. Int. J. Mol. Sci. 26 (4), 1564 (2025).

    Google Scholar 

  20. Rout, S. & Srivastav, P. P. Effect of cold plasma on the technological and functional modification of plant proteins and enzymes. Innov. Food Sci. Emerg. Tech. 88, 103447 (2023).

    Google Scholar 

  21. Jiang, Y. H., Cheng, J. H. & Sun, D. W. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci. Technol. 98, 129–139 (2020).

    Google Scholar 

  22. Takai, E. et al. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J. Phys. D Appl. Phys. 47, 285403 (2014).

    Google Scholar 

  23. Afshari, R. & Hosseini, H. Non-thermal plasma as a new food preservation method, its present and future prospect. Arch. Adv. Biosci. 5, 116–120 (2014).

    Google Scholar 

  24. Pankaj, S. et al. Physicochemical characterization of plasmatreated sodium caseinate film. Food Res. Int. 66, 438–444 (2014).

    Google Scholar 

  25. Ommat Mohammadi, E. et al. Effects of various types of vacuum cold plasma treatment on the chemical and functional properties of Whey protein isolate with a focus on interfacial properties. Colloids Interfaces. 7 (3), 54 (2023).

    Google Scholar 

  26. sadat Hosseini, M., Farahmandfar, R., Motamedzadegan, A., Mollakhalili-meybodi, N. & Lai, W. F. Modifying the Techno-functional characteristics of Quinoa protein isolate by atmospheric cold plasma (ACP). Food Hydrocolloids 169, 111583–111591 (2025).

  27. AOAC. Official Methods of Analysis 15th edn (Association of official Analytical Chemists-Washangton, DC, USA, 2002).

  28. Yüzer, M. and HüseyinGençcelep. Sesame Seed Protein: Amino Acid, Functional, and Physicochemical Profiles. foods and raw materials 11 (1). (2023).

  29. Chalamaiah, M., Esparza, Y., Temelli, F. & Wu, J. Physicochemical and functional properties of livetins fraction from Hen egg yolk. Food Bioscience. 18, 38–45 (2017).

    Google Scholar 

  30. He, X. et al. Effect of hydrothermal treatment on the structure and functional properties of Quinoa protein isolate. Foods 11 (19), 2954 (2022).

    Google Scholar 

  31. Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J. & Rivera, M. Study of some physicochemical and functional properties of Quinoa (Chenopodium Quinoa Willd) protein isolates. J. Agric. Food Chem. 56 (12), 4745–4750 (2008).

    Google Scholar 

  32. Elsohaimy, S. A., Refaay, T. M. & Zaytoun, M. A. M. Physicochemical and functional properties of Quinoa protein isolate. Annals Agricultural Sci. 60 (2), 297–305 (2015).

    Google Scholar 

  33. Liu, S. et al. Structural properties of Quinoa protein isolate: impact of neutral to high alkaline extraction pH. Foods 12 (13), 2589 (2023).

    Google Scholar 

  34. Achouri, A., Nail, V. & Boye, J. I. Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Res. Int. 46 (1), 360–369 (2012).

    Google Scholar 

  35. Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S. & Mirmoghtadaie, L. Quinoa protein: composition, structure and functional properties. Food Chem. 299, 125161 (2019).

    Google Scholar 

  36. Haque, M. A., Timilsena, Y. P. & Adhikari, B. Food proteins, structure, and function. (2016).

  37. Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W. & Siebenmorgen, T. Preparation and functional properties of rice Bran protein isolate. J. Agric. Food Chem. 47 (2), 411–416 (1999).

    Google Scholar 

  38. Tan, L., Hua, X., Yin, L., Jia, X. & Liu, H. Effect of Corona discharge cold plasma on the structure and emulsification properties of soybean protein isolate. Food Hydrocoll. 156, 110337 (2024).

    Google Scholar 

  39. Li, B., Xie, Y. & Guo, Q. Thermal acid hydrolysis modulates the solubility of Quinoa protein: the formation of different types of protein aggregates. Food Hydrocoll. 151, 109825 (2024).

    Google Scholar 

  40. Ghorbani, A., Rafe, A., Hesarinejad, M. A. & Lorenzo, J. M. Effect of pH and protein to polysaccharide ratio on coacervation of Sesame protein isolate-Tragacanth gum: Structure-rheology function. Int. J. Biol. Macromol. 13 (4), 143911 (2025b).

    Google Scholar 

  41. Zhao, H., Shen, C., Wu, Z., Zhang, Z. & Xu, C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J. Food Biochem., 44 (4), e13157–e13162 (2020).

  42. Ma, K. K. et al. Functional performance of plant proteins. Foods 11 (4), 594 (2022).

    Google Scholar 

  43. Cano-Sarmiento, C. T. D. I. et al. H S García, and G F Gutiérrez-López. Zeta potential of food matrices. Food Eng. Rev. 10, 113–138 (2018).

  44. Tang, C. H., Xin & Sun A comparative study of physicochemical and conformational properties in three vicilins from phaseolus legumes: implications for the Structure–function relationship. Food Hydrocoll. 25 (3), 315–324 (2011).

    Google Scholar 

  45. Rafe, A. et al. Structure-property relations of β-lactoglobulin/κ-carrageenan mixtures in aqueous foam. Colloids Surf., A. 640, 128267 (2022).

    Google Scholar 

  46. Tang, Q., Roos, Y. H. & Song Miao. Plant protein versus dairy proteins: A pH-Dependency investigation on their structure and functional properties. Foods 12 (2), 368 (2023).

    Google Scholar 

  47. Wang, Y., Li, B., Guo, Y., Liu, C., Liu, J., Tan, B., … Jiang, L. (2022). Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates.

  48. Cui, H., Li, S., Roy, D., Guo, Q. & Ye, A. Modifying Quinoa protein for enhanced functional properties and digestibility: A review. Curr. Res. Food Sci. 7, 100604 (2023).

    Google Scholar 

  49. Luo, L., Cheng, L., Zhang, R. & Yang, Z. Impact of high-pressure homogenization on physico-chemical, structural, and rheological properties of Quinoa protein isolates. Food Struct. 32, 100265 (2022).

    Google Scholar 

  50. Luo, L., Yang, Z., Wang, H., Ashokkumar, M. & Hemar, Y. Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of Quinoa protein isolate dispersions at acidic, neutral and alkaline pHs. Ultrason. Sonochem. 91, 106232 (2022).

    Google Scholar 

  51. Zhang, Y., Kong, Y., Xu, W., Yang, Z. & Bao, Y. Electron beam irradiation alters the physicochemical properties of Chickpea proteins and the peptidomic profile of its digest. Molecules 28 (16), 6161 (2023).

    Google Scholar 

  52. Chen, X. et al. Effect of Xanthoceras sorbifolium bunge leaves saponins on the foaming properties of Whey protein isolate at varying pHs: correlation between interface, rheology, and foaming characteristics. Lwt 187, 115316 (2023).

    Google Scholar 

  53. Mäkinen, O. E., Zannini, E., Koehler, P. & Arendt, E. K. Heat-denaturation and aggregation of Quinoa (Chenopodium Quinoa) globulins as affected by the pH value. Food Chem. 196, 17–24 (2016).

    Google Scholar 

  54. Bu, F., Nayak, G., Bruggeman, P., Annor, G. & Ismail, B. P. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chem. 371, 131135 (2022).

    Google Scholar 

  55. Ashraf, S., Saeed, S. M. G., Sayeed, S. A. & Ali, R. Impact of microwave treatment on the functionality of cereals and legumes. Int. J. Agric. Biology 14 (3), 365–370 (2012).

  56. Inglett, G. E., Chen, D. & Liu, S. X. Antioxidant activities of selective gluten free ancient grains. Food Nutr. Sci. 6 (7), 612–621 (2015).

    Google Scholar 

  57. Tang, Y. et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium Quinoa Willd. Genotypes. Food Chem. 166, 380–388 (2015).

    Google Scholar 

  58. Sharafodin, H. & Soltanizadeh, N. Potential application of DBD plasma technique for modifying structural and physicochemical properties of soy protein isolate. Food Hydrocoll. 122, 107077 (2022).

    Google Scholar 

  59. Akharume, F. U., Aluko, R. E. & Adedeji, A. A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 20 (1), 198–224 (2021).

    Google Scholar 

  60. Sofi, S. A. et al. Irradiation-induced modifications of Apple seed protein isolate: exploring techno-functional, structural, thermal, and morphological characteristics. Radiat. Phys. Chem. 225, 112139 (2024).

    Google Scholar 

  61. Zhang, S. et al. Effect of steam explosion treatments on the functional properties and structure of camellia (Camellia oleifera Abel.) seed cake protein. Food Hydrocoll. 93, 189–197 (2019).

  62. Vera, A., Valenzuela, M. A., Yazdani-Pedram, M., Tapia, C. & Abugoch, L. Conformational and physicochemical properties of Quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrason. Sonochem. 51, 186–196 (2019).

    Google Scholar 

  63. Luo, L., Zhang, R., Palmer, J., Hemar, Y. & Yang, Z. Impact of high hydrostatic pressure on the gelation behavior and microstructure of Quinoa protein isolate dispersions. ACS Food Sci. Technol. 1 (11), 2144–2151 (2021).

    Google Scholar 

  64. Sun, W., Cui, C., Zhao, M., Zhao, Q. & Yang, B. Effects of composition and oxidation of proteins on their solubility, aggregation and proteolytic susceptibility during processing of Cantonese sausage. Food Chem. 124 (1), 336–341 (2011).

    Google Scholar 

Download references