References
-
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).
-
Romano, S., Jackson, S. A., Patry, S. & Dobson, A. D. W. Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Marine Drugs 16, 244 (2018).
-
Seyedsayamdost, M. R. Toward a global picture of bacterial secondary metabolism. J. Ind. Microbiol. Biotechnol. 46, 301–311 (2019).
-
Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front. Microbiol. 10, 294 (2019).
-
Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).
-
Lindig, A., Hubmann, G. & Lütz, S. Microtiter plate cultivation systems enable chemically diverse metabolic footprints during bacterial natural product discovery. Biotechnol. Bioeng. 122, 2021–2036 (2025).
-
Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016).
-
Helf, M. J. et al. Scaling up for success: from bioactive natural products to new medicines. Nat. Prod. Rep. (2024).
-
Katz, L. & Baltz, R. H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016).
-
Delvigne, F., Takors, R., Mudde, R., van Gulik, W. & Noorman, H. Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond. Microbial Biotechnol. 10, 1267–1274 (2017).
-
Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).
-
Xia, J. et al. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chin. J. Chem. Eng. 30, 178–184 (2021).
-
Marques, M. P. C., Cabral, J. M. S. & Fernandes, P. Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J. Chem. Tech. Biotech. 85, 1184–1198 (2010).
-
Xiaoming Yang. In Manual of Industrial Microbiology and Biotechnology (John Wiley & Sons, Ltd, 2014), 669–675.
-
Kensy, F., Engelbrecht, C. & Büchs, J. Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb. Cell Fact 8, 68 (2009).
-
Wewetzer, S. J. et al. Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J. Biol. Eng. 9, 9 (2015).
-
Micheletti, M. et al. Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chem. Eng. Sci. 61, 2939–2949 (2006).
-
Islam, R. S., Tisi, D., Levy, M. S. & Lye, G. J. Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design. Biotechnol. Progress 23, 785–793 (2007).
-
Funke, M. et al. Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb. Cell Fact 9, 86 (2010).
-
Unthan, S., Radek, A., Wiechert, W., Oldiges, M. & Noack, S. Bioprocess automation on a mini pilot plant enables fast quantitative microbial phenotyping. Microb. Cell Fact 14, 32 (2015).
-
Seletzky, J. M. et al. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Biotech. Bioeng. 98, 800–811 (2007).
-
Trujillo-Roldán, M. A. et al. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Appl. Microbiol. Biotechnol. 97, 9665–9674 (2013).
-
Sohoni, S. V., Bapat, P. M. & Lantz, A. E. Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb. Cell Fact 11, 9 (2012).
-
Koepff, J. et al. Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation. Biotechnol. Bioeng. 114, 2011–2022 (2017).
-
Young, K. D. Bacterial morphology: why have different shapes?. Curr. Opinion Microbiol. 10, 596–600 (2007).
-
Zacchetti, B., Smits, P. & Claessen, D. Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans. Front. Microbiol. 9, 943 (2018).
-
Wang, H., Zhao, G. & Ding, X. Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Sci. Rep. 7, 13226 (2017).
-
Aleid, S. M., Hamad, S. H., Delaunay, S., Fick, M. & Olmos, E. Pristinamycin production using Streptomyces pristinaespiralis and date sirup as substrate-process modeling, optimization, and scale-up. Prep. Biochem. Biotechnol. 52, 1044–1050 (2022).
-
Demir, T., Hameş, E. E., Öncel, S. S. & Vardar-Sukan, F. An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. Int. Biodeterior. Biodegrad. 103, 134–140 (2015).
-
El-Naggar, N.E.-A. et al. Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Sci. Rep. 9, 13571 (2019).
-
Elsayed, E. A., Farid, M. A. & El-Enshasy, H. A. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnol. 19, 46 (2019).
-
Gamboa-Suasnavart, R. A. et al. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World J. Microbiol. Biotechnol. 29, 1421–1429 (2013).
-
Elsayed, E. A., Omar, H. G. & El-Enshasy, H. A. Development of fed-batch cultivation strategy for efficient oxytetracycline production by Streptomyces rimosus at semi-industrial scale. Braz. arch. biol. technol. 58, 676–685 (2015).
-
Gamboa-Suasnavart R.A. et al. Volumetric power input as a reliable parameter for scale-up from shake flask to stirred-tank bioreactor: Production of a recombinant glycoprotein by Streptomyces lividans. 16652738 (2019).
-
Hamed, M. B. et al. Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans. Microb. Cell Fact 16, 232 (2017).
-
Minas, W., Bailey, J. E. & Duetz, W. Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie Van Leeuwenhoek 78, 297–305 (2000).
-
Shi, J. et al. Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026. J. Ind. Microbiol. Biotechnol. 43, 1027–1035 (2016).
-
Srivastava, A., Singh, V. & Tripathi, C. K. M. Scale up and optimization of cholesterol oxidase production from Streptomyces rimosus MTCC 10792 in a 3-L bioreactor. Environ. Sustain. 1, 99–107 (2018).
-
Schwarz, J., Hubmann, G., Rosenthal, K. & Lütz, S. Triaging of culture conditions for enhanced secondary metabolite diversity from different bacteria. Biomolecules 11, 193 (2021).
-
Lindig, A., Schwarz, J., Hubmann, G., Rosenthal, K. & Lütz, S. Bivariate one strain many compounds designs expand the secondary metabolite production space in Corallococcus coralloides. Microorganisms 11, 2592 (2023).
-
Chen, G., Wang, G. Y., Li, X., Waters, B. & Davies, J. Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. J. Antibiot. 53, 1145–1153 (2000).
-
Sekurova, O. N. et al. Targeted metabolomics and high-throughput RNA sequencing-based transcriptomics reveal massive changes in the Streptomyces venezuelae NRRL B-65442 metabolism caused by ethanol shock. Microbiol. Spectr. 10, e0367222 (2022).
-
Sekurova, O. N., Zhang, J., Kristiansen, K. A. & Zotchev, S. B. Activation of chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712 by ethanol shock: insights from the promoter fusion studies. Microb. Cell Fact 15, 85 (2016).
-
Wang, D., Xu, P., Sun, J., Yuan, J. & Zhao, J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microbial Technol. 153, 109907 (2022).
-
Duboc, P. & von Stockar, U. Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotech. Bioeng. 58, 428–439 (1998).
-
Eysseric, H. et al. There is not simple method to maintain a constant ethanol concentration in long-term cell culture: keys to a solution applied to the survey of astrocytic ethanol absorption. Alcohol (Fayetteville, N.Y.) 14(111), 115 (1997).
-
Pagliardini, J. et al. Quantitative evaluation of yeast’s requirement for glycerol formation in very high ethanol performance fed-batch process. Microb. Cell Fact 9, 36 (2010).
-
Büchs, J. Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. 7, 91–98 (2001).
-
Funke, M., Diederichs, S., Kensy, F., Müller, C. & Büchs, J. The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol. Bioeng. 103, 1118–1128 (2009).
-
Lopes, M., Mota, M. & Belo, I. Oxygen mass transfer rate in a pressurized lab-scale stirred bioreactor. Chem. Eng. Technol. 36, 1779–1784 (2013).
-
Running, J. A. & Bansal, K. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Biotech. Bioeng. 113, 1729–1735 (2016).
-
van Dissel, D., Claessen, D. & van Wezel, G. P. In Advances in Applied Microbiology, edited by S. Sariaslani & G. M. Gadd (Academic Press), 1–45. (2014)
-
Roubos, J. A., Krabben, P., Luiten, R. G., Verbruggen, H. B. & Heijnen, J. J. A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol. Progress 17, 336–347 (2001).
-
Sánchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot. 63, 442–459 (2010).
-
Söderholm, N., Tanner, H. & Sandblad, L. Nutrient deprived growth of Streptomyces promotes foraging growth and enhanced antimicrobial activity. bioRxiv, 2024.04.15.589617 (2024).
-
van Wezel, G. P., White, J., Young, P., Postma, P. W. & Bibb, M. J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol. Microbiol. 23, 537–549 (1997).
-
Nikolaidis, M. et al. A panoramic view of the genomic landscape of the genus Streptomyces. Microb. Genom. 9, mgen001028 (2023).
-
Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
-
Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34, 171–198 (2010).
-
Kojima, I., Cheng, Y. R., Mohan, V. & Demain, A. L. Carbon source nutrition of rapamycin biosynthesis in Streptomyces hygroscopicus. J. Ind. Microbiol. 14, 436–439 (1995).
-
Kim, S. Y., Kim, Y. J., Lee, S.-W. & Lee, E.-H. Interactions between bacteria and nano (micro)-sized polystyrene particles by bacterial responses and microscopy. Chemosphere 306, 135584 (2022).
-
Baez, A. & Shiloach, J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb. Cell Fact 13, 181 (2014).
-
Senges, C. H. R. et al. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. Proc. Natl. Acad. Sci. United States Am. 115, 2490–2495 (2018).
-
Pierwola, A., Krupinski, T., Zalupski, P., Chiarelli, M. & Castignetti, D. Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B. Appl. Environ. Microbiol. 70, 831–836 (2004).
-
Zhou, Y. et al. Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient. Molecules 23, 125 (2018).
-
Gerson, D. F. & Kole, M. M. Quantitative measurements of mixing intensity in shake-flasks and stirred tank reactors. use of the mixmeter, a mixing process analyzer. Biochem. Eng. J. 7, 153–156 (2001).
-
Dürauer, A., Hobiger, S., Walther, C. & Jungbauer, A. Mixing at the microscale: power input in shaken microtiter plates. Biotechnol. J. 11, 1539–1549 (2016).
-
Peter, C. P., Suzuki, Y. & Büchs, J. Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotech. Bioeng. 93, 1164–1176 (2006).
-
Beites, T. et al. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci. Rep. 5, 12887 (2015).
-
Guo, L., Xi, B. & Lu, L. Strategies to enhance production of metabolites in microbial co-culture systems. Bioresour. Technol. 406, 131049 (2024).
-
Tanaka, Y., Hosaka, T. & Ochi, K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J. Antibiot. 63, 477–481 (2010).
-
Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).
-
Dunkel, T. et al. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella. Water Sci. Technol. 73, 1333–1340 (2016).
-
Marquard, D. et al. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations. J. Biotechnol. 234, 90–98 (2016).
-
Gustavsson, R., Mandenius, C. F., Löfgren, S., Scheper, T. & Lindner, P. In situ microscopy as online tool for detecting microbial contaminations in cell culture. J. Biotechnol. 296, 53–60 (2019).
-
Zhang, J., Li, C., Yin, Y., Zhang, J. & Grzegorzek, M. Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artif. Intell. Rev. 56, 1013–1070 (2023).
-
Cutler, K. J. et al. Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat. Methods 19, 1438–1448 (2022).
-
Guez, J.-S., Lacroix, P.-Y., Château, T. & Vial, C. Deep in situ microscopy for real-time analysis of mammalian cell populations in bioreactors. Sci .Rep. 13, 22045 (2023).
-
Whelan, J. et al. Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration. Bioprocess Biosyst. Eng. 35, 963–975 (2012).
-
Pearson, A. P., Glennon, B. & Kieran, P. M. Comparison of morphological characteristics of Streptomyces natalensis by image analysis and focused beam reflectance measurement. Biotechnol. Progress 19, 1342–1347 (2003).
-
Steinmann, A. et al. A targeted metabolomics method for extra- and intracellular metabolite quantification covering the complete monolignol and lignan synthesis pathway. Metab. Eng. Commun. 15, e00205 (2022).
-
Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
-
Pagès, J. Analyse factorielle de données mixtes. Revue de Statistique Appliquée 52, 93–111 (2004).
-
Lê, S., Josse, J. & Husson, F. FactoMineR : An R package for multivariate analysis. J. Stat. Soft. 25, 1–18 (2008).
-
Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).
-
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13, 2498–2504 (2003).
-
Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).
-
Jossen, V., Eibl, R., Pörtner, R., Kraume, M. & Eibl, D. In Current Developments in Biotechnology and Bioengineering (Elsevier), 179–215. (2017)
-
Moo-Young, M. (ed.). Comprehensive biotechnology. Principles and practices in industry, agcriculture, medicine and the environment;1 – 6 (Elsevier, 2011).
-
Li, C. et al. CFD analysis of the turbulent flow in baffled shake flasks. Biochem. Eng. J. 70, 140–150 (2013).
-
Maschke, R. W., John, G. T. & Eibl, D. Monitoring of Oxygen, pH, CO 2, and Biomass in Smart Single-Use Shake Flasks. Chemie Ingenieur Technik 94, 1995–2001 (2022).
