Enhancing anti-inflammatory activity of Eucalyptus camaldulensis by upregulating secondary metabolites using suspension cultures techniques

enhancing-anti-inflammatory-activity-of-eucalyptus-camaldulensis-by-upregulating-secondary-metabolites-using-suspension-cultures-techniques
Enhancing anti-inflammatory activity of Eucalyptus camaldulensis by upregulating secondary metabolites using suspension cultures techniques

References

  1. Kheder, D. A., Al-Habib, O. A., Gilardoni, G. & Vidari, G. Components of volatile fractions from Eucalyptus camaldulensis leaves from Iraqi–Kurdistan and their potent spasmolytic effects. Molecules 25 (4), 804 (2020).

    Google Scholar 

  2. Dheyab, A. S. et al. Antimycobacterial activity and phytochemical properties of Eucalyptus camaldulensis (eucalyptus) extracted by deep eutectic solvents. Materials Today: Proceedings 65, 2738–2742 (2022).

    Google Scholar 

  3. Islam, F., Khatun, H., Khatun, M., Ali, S. M. M. & Khanam, J. A. Growth Inhibition and apoptosis of Ehrlich Ascites carcinoma cells by the methanol extract of Eucalyptus camaldulensis. Pharm. Biol. 52 (3), 281–290 (2014).

    Google Scholar 

  4. Nasser, M. et al. Influence of the extraction solvent and of the altitude on the anticancer activity of Lebanese Eucalyptus camaldulensis extract alone or in combination with low dose of cisplatin in A549 human lung adenocarcinoma cells. Processes 10 (8), 1461 (2022).

    Google Scholar 

  5. Tir, M. et al. Eucalyptus camaldulensis seeds as a potential source of beneficial compounds: High-Performance liquid Chromatography–Photodiode Array–Mass spectrometry (HPLC-PDA-MS/MS) profiling of secondary metabolites and the assessment of the biological effects. Anal. Lett. 56 (10), 1607–1618 (2023).

    Google Scholar 

  6. Ouattara, B., Semay, I., Ouédraogo, J. C. W., Gerbaux, P. & Ouédraogo, I. W. Optimization of the extraction of phenolic compounds from Eucalyptus camaldulensis Dehnh leaves using response surface methodology. Chem. Afr. 7 (3), 1251–1267 (2024).

    Google Scholar 

  7. Ghasemian, A., Eslami, M., Hasanvand, F., Bozorgi, H. & Al-Abodi, H. R. Eucalyptus camaldulensis properties for use in the eradication of infections. Comparative immunology, microbiology and infectious diseases 65, 234–247 (2019).

    Google Scholar 

  8. Huang, Y., An, M., Fang, A., Olatunji, O. J. & Eze, F. N. Antiproliferative activities of the lipophilic fraction of eucalyptus camaldulensis against mcf-7 breast cancer cells, uplc (2022).-esi-qtof-ms metabolite profile, and antioxidative functions. ACS omega, 7(31): pp. 27369–27381.

  9. Chandorkar, N., Tambe, S., Amin, P. & Madankar, C. A systematic and comprehensive review on current Understanding of the Pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus. 1 (4), 100089 (2021).

    Google Scholar 

  10. Mondal, M. et al. Analgesic and anti-inflammatory potential of essential oil of Eucalyptus camaldulensis leaf: in vivo and in Silico studies. Nat. Prod. Commun. 16 (4), 1934578X211007634 (2021).

    Google Scholar 

  11. Grewal, K. et al. Chemical composition and potential of Eucalyptus camaldulensis Dehnh. Essential oil and its major components as anti-inflammatory and anti-leishmanial agent. J. Essent. Oil Bearing Plants. 25 (3), 419–429 (2022).

    Google Scholar 

  12. Saleem, M. et al. Variations in the composition and biochemical attributes of Eucalyptus camaldulensis L. leaves essential oil as function of drying methods. J. Essent. Oil Bearing Plants. 26 (5), 1266–1277 (2023).

    Google Scholar 

  13. Zhao, C., Sun, J., Fang, C. & Tang, F. 1, 8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation, 37: pp. 566–572. (2014).

  14. Moawad, S. et al. Bioactivity and Nanoformulation of Eucalyptus Camaldulensis Essential Oils: Implications for Antioxidant and Anti-inflammatory Applications (ACS Omega, 2025).

  15. Moges, G. W., Manahelohe, G. M. & Asegie, M. A. Phenolic, Flavonoid Contents, Antioxidant, and Antibacterial Activity of Selected Eucalyptus Species Vol. 13, p. 147–157 (Medicine, & Natural Product Chemistry, 2024). 1Biology.

  16. Salem, M. Z., Ashmawy, N. A., Elansary, H. O. & El-Settawy, A. A. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils. Nat. Prod. Res. 29 (7), 681–685 (2015).

    Google Scholar 

  17. Ji, B. et al. Application of data Modeling, instrument engineering and nanomaterials in selected medid the scientific recinal plant tissue culture. Plants 12 (7), 1505 (2023).

    Google Scholar 

  18. Rao, S. R. & Ravishankar, G. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 20 (2), 101–153 (2002).

    Google Scholar 

  19. Pinto, G., Santos, C., Neves, L. & Araújo, C. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep. 21 (3), 208–213 (2002).

    Google Scholar 

  20. Dias, M. I., Sousa, M. J., Alves, R. C. & Ferreira, I. C. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crops Prod. 82, 9–22 (2016).

    Google Scholar 

  21. Aggarwal, D., Reddy, M. S. & Kumar, A. Biotechnological approaches for the improvement of Eucalyptus. Plant tissue culture: propagation, conservation and crop improvement, : pp. 219–244. (2016).

  22. Manokari, M., Priyadharshini, S. & Shekhawat, M. S. Micropropagation of sea grape (Coccoloba uvifera (L.) L). South. Afr. J. Bot. 140, 250–258 (2021).

    Google Scholar 

  23. Dibax, R., Quisen, R. C., Bona, C. & Quoirin, M. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Brazilian Archives Biology Technol. 53, 311–318 (2010).

    Google Scholar 

  24. Mubarak, E. E., Mat, R. & Taha Eucalyptus camaldulensis Dehn.(Red Gum): Micropropagation, and volatile constituents. J. Essent. Oil Bearing Plants. 18 (3), 713–717 (2015).

    Google Scholar 

  25. Prakash, M. & Gurumurthi, K. Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell, Tissue and Organ Culture (PCTOC), 100: pp. 13–20. (2010).

  26. Mahrous, M. H., El-Hawiet, A., Ragab, A. E. & Hammoda, H. M. EL-Fiky, Somatic embryogenesis induction of syzygium cumini. Open. J. Plant. Sci. 8 (1), 005–009 (2023).

    Google Scholar 

  27. Mehmood, A., Javid, S., Khan, M. F., Ahmad, K. S. & Mustafa, A. Vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem. 16 (1), 64 (2022).

    Google Scholar 

  28. Sumere, B. R. et al. Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate Peel (Punica granatum L). Ultrason. Sonochem. 48, 151–162 (2018).

    Google Scholar 

  29. Dalila, Z. D., Jaafar, H. & Manaf, A. A. Effects of 2, 4-D and Kinetin on callus induction of Barringtonia racemosa leaf and endosperm explants in different types of basal media. Asian J. Plant. Sci. 12 (1), 21–27 (2013).

    Google Scholar 

  30. Endress, R. & Endress, R. Plant Cell Biotechnology (Springer, 1994).

  31. El-Haggar, M., El-Hosseiny, L., Ghazy, N. M., El-Fiky, F. K. & El-Hawiet, A. Phytochemical investigation, antimicrobial and cytotoxic activities of suspension cultures of lepidium sativum L. South. Afr. J. Bot. 138, 500–505 (2021).

    Google Scholar 

  32. Teixeira, D. M. & Costa, C. T. Novel methods to extract flavanones and xanthones from the root bark of Maclura pomifera. Journal of chromatography A, 1062(2): pp. 175–181. (2005).

  33. Steinmann, D. & Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal. 55 (4), 744–757 (2011).

    Google Scholar 

  34. El-Hawiet, A. et al. Screening natural libraries of human milk oligosaccharides against lectins using CaR-ESI-MS. Analyst 143 (2), 536–548 (2018).

    Google Scholar 

  35. ICH, I. Q8 (R2) pharmaceutical Development. ICH Q9 (quality risk management). ICH Q., 10. (2009).

  36. Shoukry, S. M., El-Hawiet, A., El-Mezayen, N. S., Ghazy, N. M. & Ibrahim, R. S. Unraveling putative antiulcer phytoconstituents against Helicobacter pylori urease and human H+/K+-ATPase from Jacaranda mimosifolia using UPLC-MS/MS coupled to chemometrics and molecular Docking. Microchem. J. 189, 108550 (2023).

    Google Scholar 

  37. Xiao, H., Ma, W., Zha, L., Xiao, Y. & Li, H. Curcumin alleviates LPS-induced WI-38 cell inflammation injury by regulating PTGS2 expression. Hereditas 162 (1), 81 (2025).

    Google Scholar 

  38. Chen, A. et al. Innovative use of forensic STRs for authentication of human cell lines stored over 34 years. J. Translational Genet. Genomics. 9 (3), 149–166 (2025).

    Google Scholar 

  39. Wei, Y., Zhang, J., Memon, A. H. & Liang, H. Molecular model and in vitro antioxidant activity of a water-soluble and stable phloretin/hydroxypropyl-β-cyclodextrin inclusion complex. J. Mol. Liq. 236, 68–75 (2017).

    Google Scholar 

  40. Nahar, L., Russell, W. R., Middleton, M., Shoeb, M. & Sarker, S. D. Antioxidant phenylacetic acid derivatives from the seeds of ilex aquifolium. Acta Pharm. 55 (2), 187–193 (2005).

    Google Scholar 

  41. de Souza Santos, C. C. et al. Isolation of antioxidant phenolics from schinopsis Brasiliensis based on a preliminary LC-MS profiling. Phytochemistry 140, 45–51 (2017).

    Google Scholar 

  42. Elgendi, S., Ezzat, M., Elsayed, A., Saad, A. & El Motayam, A. K. HPLC-PDA-ESI-MS-MS analysis of acids content of Lantana Camara L. Flower extract and its anticoagulant activity. Egypt. J. Chem. 66 (1), 249–256 (2023).

    Google Scholar 

  43. Amarowicz, R., Estrella, I., Hernandez, T. & TROSZYŃSKA, A. Antioxidant activity of extract of Adzuki bean and its fractions. J. Food Lipids. 15 (1), 119–136 (2008).

    Google Scholar 

  44. Ivanov, I., Vasileva, A., Tasheva, D. & Dimitrova, M. Isolation and characterization of natural inhibitors of post-proline specific peptidases from the leaves of Cotinus Coggygria scop. J. Ethnopharmacol. 314, 116508 (2023).

    Google Scholar 

  45. Li, C. & Seeram, N. P. Ultra-fast liquid chromatography coupled with electrospray ionization time‐of‐flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves. J. Sep. Sci. 41 (11), 2331–2346 (2018).

    Google Scholar 

  46. Azizah, M. et al. UHPLC-ESI-QTOF-MS/MS-based molecular networking guided isolation and dereplication of antibacterial and antifungal constituents of ventilago denticulata. Antibiotics 9 (9), 606 (2020).

    Google Scholar 

  47. Lobo-Echeverri, T. et al. Constituents of the leaves and twigs of Calyptranthes p allens collected from an experimental plot in Southern Florida. J. Nat. Prod. 68 (4), 577–580 (2005).

    Google Scholar 

  48. Santos, B. M. et al. Quantification and localization of formylated phloroglucinol compounds (FPCs) in Eucalyptus species. Front. Plant Sci. 10, 186 (2019).

    Google Scholar 

  49. Zhang, Y. et al. Compounds identification in semen cuscutae by ultra-high-performance liquid chromatography (UPLCs) coupled to electrospray ionization mass spectrometry. Molecules 23 (5), 1199 (2018).

    Google Scholar 

  50. Ma, J. et al. Bioactive novel polyphenols from the fruit of Manilkara Zapota (Sapodilla). J. Nat. Prod. 66 (7), 983–986 (2003).

    Google Scholar 

  51. Krasteva, I. & Nikolov, S. Flavonoids in astragalus corniculatus. Quím. Nova. 31, 59–60 (2008).

    Google Scholar 

  52. Odeyemi, S. & Dewar, J. Repression of acetaminophen-induced hepatotoxicity in HepG2 cells by polyphenolic compounds from lauridia Tetragona (Lf) RH Archer. Molecules 24 (11), 2118 (2019).

    Google Scholar 

  53. Feng, S. et al. Systematic characterisation of the effective components of five Callicarpa species with UPLC-Q-TOF-MS and evaluation of their anti-hyperuricaemic activity. Nat. Prod. Res. 37 (10), 1662–1667 (2023).

    Google Scholar 

  54. Tienaho, J. et al. Field-grown and in vitro propagated round-leaved sundew (Drosera rotundifolia L.) show differences in metabolic profiles and biological activities. Molecules 26 (12), 3581 (2021).

    Google Scholar 

  55. Daus, M. et al. Phloroglucinol–meroterpenoids Leaves Eucalyptus Camaldulensis Dehnh Phytochemistry, 200: 113179. (2022).

    Google Scholar 

  56. Chen, C. Y. et al. Gallic acid in old oolong tea. Tea: In health and diseases prevention, : pp. 447–456. (2013).

  57. Hong, Y., Liao, X. & Chen, Z. Determination of bioactive components in the fruits of cercis chinensis bunge by HPLC-MS/MS and quality evaluation by principal components and hierarchical cluster analyses. J. Pharm. Anal. 11 (4), 465–471 (2021).

    Google Scholar 

  58. Plirat, W., Chaniad, P., Phuwajaroanpong, A., Septama, A. W. & Punsawad, C. Phytochemical, Antimalarial, and acute oral toxicity properties of selected crude extracts of prabchompoothaweep remedy in plasmodium berghei-Infected mice. Trop. Med. Infect. Disease. 7 (12), 395 (2022).

    Google Scholar 

  59. Stewart, A. J., Mullen, W. & Crozier, A. On-line high performance Liquid Chromatography Analysis of the Antioxidant Activity of Phenolic Compounds in Green and Black Tea Vol. 49, p. 52–60 (Molecular Nutrition & Food Research, 2005). 1.

  60. Medic, A., Zamljen, T., Hudina, M. & Veberic, R. Time-Dependent degradation of naphthoquinones and phenolic compounds in walnut husks. Biology 11 (2), 342 (2022).

    Google Scholar 

  61. Sanz, M. et al. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J. Agric. Food Chem. 58 (17), 9631–9640 (2010).

    Google Scholar 

  62. Wu, F. P., Liu, L. H., Jin, P., Pu, H. & Cai, W. Determination of metabolites of Phloretin in rats using UHPLC-LTQ-Orbitrap mass spectrometry. Trop. J. Pharm. Res. 18 (10), 2167–2173 (2019).

    Google Scholar 

  63. Darwish, R. S. et al. Differential anti-inflammatory biomarkers of the desert truffles terfezia Claveryi and Tirmania Nivea revealed via UPLC-QqQ-MS-based metabolomics combined to chemometrics. Lwt 150, 111965 (2021).

    Google Scholar 

  64. Sobeh, M. et al. Albizia Anthelmintica: HPLC-MS/MS Profiling and in Vivo anti-inflammatory, Pain Killing and Antipyretic Activities of its Leaf Extract Vol. 115, p. 108882 (Biomedicine & Pharmacotherapy, 2019).

  65. Avula, B. et al. Chemometric analysis and chemical characterization for the botanical identification of glycyrrhiza species (G. glabra, G. uralensis, G. inflata, G. echinata and G. lepidota) using liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTof). J. Food Compos. Anal. 112, 104679 (2022).

    Google Scholar 

  66. Savić, I. M. et al. The qualitative analysis of the green tea extract using ESI-MS method. Savremene Tehnologije. 3 (1), 30–37 (2014).

    Google Scholar 

  67. Radwan, R. A., El-Sherif, Y. A. & Salama, M. M. A novel biochemical study of anti-ageing potential of Eucalyptus camaldulensis bark waste standardized extract and silver nanoparticles. Colloids Surf., B. 191, 111004 (2020).

    Google Scholar 

  68. Costa, F. N., Borges, R. M., Leitão, G. G. & Jerz, G. Preparative mass-spectrometry profiling of minor concentrated metabolites in salicornia Gaudichaudiana Moq by high‐speed countercurrent chromatography and off‐line electrospray mass‐spectrometry injection. J. Sep. Sci. 42 (8), 1528–1541 (2019).

    Google Scholar 

  69. Stalmach, A. et al. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab. Dispos. 37 (8), 1749–1758 (2009).

    Google Scholar 

  70. Hing-Biu, L., Peart, T. E. & Carron, J. M. Gas chromatographic and mass spectrometric determination of some resin and fatty acids in pulpmill effluents as their pentafluorobenzyl ester derivatives. J. Chromatogr. A. 498, 367–379 (1990).

    Google Scholar 

  71. Li, H. et al. Molecular networking, network pharmacology, and molecular Docking approaches employed to investigate the changes in ephedrae herba before and after honey-processing. Molecules 27 (13), 4057 (2022).

    Google Scholar 

  72. Fougère, L., Da Silva, D., Destandau, E. & Elfakir, C. TLC-MALDI‐TOF‐MS‐based identification of flavonoid compounds using an inorganic matrix. Phytochem. Anal. 30 (2), 218–225 (2019).

    Google Scholar 

  73. Braunberger, C. et al. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry 118, 74–82 (2015).

    Google Scholar 

  74. McCullagh, M., Pereira, C. A. M. & Yariwake, J. H. Use of ion mobility mass spectrometry to enhance cumulative analytical specificity and separation to profile 6-C/8‐C‐glycosylflavone critical isomer pairs and known–unknowns in medicinal plants. Phytochem. Anal. 30 (4), 424–436 (2019).

    Google Scholar 

  75. Tsang, C. et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br. J. Nutr. 94 (2), 170–181 (2005).

    Google Scholar 

  76. Stöggl, W., Huck, C. & Bonn, G. K. Structural Elucidation of Catechin and epicatechin in sorrel leaf extracts using liquid-chromatography coupled to diode array‐, fluorescence‐, and mass spectrometric detection. J. Sep. Sci. 27 (7‐8), 524–528 (2004).

    Google Scholar 

  77. Miuc, A., Vončina, E. & Lešnik, U. Composition of organic compounds adsorbed on PM10 in the air above Maribor. Acta Chim. Slov. 62 (4), 834–848 (2015).

    Google Scholar 

  78. Shi, H. et al. Chemical comparison and discrimination of two plant sources of Angelicae Dahuricae Radix, Angelica Dahurica and Angelica Dahurica var. formosana, by HPLC-Q/TOF‐MS and quantitative analysis of multiple components by a single marker. Phytochem. Anal. 33 (5), 776–791 (2022).

    Google Scholar 

  79. Rodrigues, J. G. M. et al. The Immunomodulatory activity of Chenopodium ambrosioides reduces the parasite burden and hepatic granulomatous inflammation in schistosoma mansoni-infection. J. Ethnopharmacol. 264, 113287 (2021).

    Google Scholar 

  80. da Silva, M. G. et al. Cleaner production of antimicrobial and anti-UV cotton materials through dyeing with Eucalyptus leaves extract. J. Clean. Prod. 199, 807–816 (2018).

    Google Scholar 

  81. de Lima, M. F. R. et al. Bioactivity flavonoids from roots of euphorbia Tirucalli L. Phytochem. Lett. 41, 186–192 (2021).

    Google Scholar 

  82. Prachayasittikul, S. et al. Bioactive Metabolites Spilanthes Acmella Murr Molecules, 14(2): 850–867. (2009).

    Google Scholar 

  83. Shahzad, M. N. et al. Profiling of phytochemicals from aerial parts of terminalia Neotaliala using LC-ESI-MS2 and determination of antioxidant and enzyme Inhibition activities. PloS One. 17 (3), e0266094 (2022).

    Google Scholar 

  84. Ghareeb, M. A. et al. Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato–renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 8 (9), 415 (2019).

    Google Scholar 

  85. Syrpas, M., Subbarayadu, K., Kitrytė, V. & Venskutonis, P. R. High-pressure extraction of antioxidant-rich fractions from shrubby cinquefoil (Dasiphora fruticosa L. Rydb.) leaves: process optimization and extract characterization. Antioxidants 9 (6), 457 (2020).

    Google Scholar 

  86. Shrestha, S. S. et al. Phytochemical Investigations and in Vitro Bioactivity Screening on Melia Azedarach L. Leaves Extract from Nepal Vol. 18, p. e2001070 (Chemistry & Biodiversity, 2021). 5.

  87. Zhang, B. et al. A novel methoxybenzyl 5-nitroacridone derivative effectively triggers g1 cell cycle arrest in chronic myelogenous leukemia k562 cells by inhibiting cdk4/6-mediated phosphorylation of Rb. Int. J. Mol. Sci. 21 (14), 5077 (2020).

    Google Scholar 

  88. Rengasamy, K. R. et al. Bioactive compounds in seaweeds: an overview of their biological properties and safety. Food Chem. Toxicol. 135, 111013 (2020).

    Google Scholar 

  89. Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V. & Alessa, F. M. Al-Mssallem, Flavonoids as potential anti-inflammatory molecules: A review. Molecules 27 (9), 2901 (2022).

    Google Scholar 

  90. Cai, Z. M. et al. 1, 8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 23 (10), 938–954 (2021).

    Google Scholar 

  91. Shen, N. et al. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383, 132531 (2022).

    Google Scholar 

  92. Mishra, A. K. et al. Phytochemical screening and antioxidant activity of essential oil of Eucalyptus leaf. Pharmacognosy J. 2 (16), 25–28 (2010).

    Google Scholar 

Download references