References
-
Yokoyama, R. & Honda, D. Taxonomic rearrangement of the genus Schizochytrium sensu Lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. Nov Mycoscience. 48 (4), 199–211. https://doi.org/10.1007/S10267-006-0362-0 (2007).
-
Morabito, C. et al. The lipid metabolism in thraustochytrids. Prog. Lipid Res. 76, 101007. https://doi.org/10.1016/j.plipres.2019.101007 (2019).
-
Honda, D., Yokochi, T., Nakahara, T., Erata, M. & Higashihara, T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a Mangrove area in the West Pacific ocean. Mycol. Res. 102 (4), 439–448. https://doi.org/10.1017/S0953756297005170 (1998).
-
Otagiri, M., Khalid, A., Moriya, S., Osada, H. & Takahashi, S. Novel squalene-producing thraustochytrids found in Mangrove water. Biosci. Biotechnol. Biochem. 81 (10), 2034–2037. https://doi.org/10.1080/09168451.2017.1359485 (2017).
-
Bartosova, Z. et al. Combined metabolome and lipidome analyses for in-depth characterization of lipid accumulation in the DHA producing Aurantiochytrium sp. T66. Metabolites 11 (3), 135. https://doi.org/10.3390/metabo11030135 (2021).
-
Aasen, I. M. et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl. Microbiol. Biotechnol. 100 (10), 4309–4321. https://doi.org/10.1007/s00253-016-7498-4 (2016).
-
Raghukumar, S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar. Biotechnol. 10 (6), 631–640. https://doi.org/10.1007/s10126-008-9135-4 (2008).
-
Iwasaka, H. et al. A possible trifunctional β-carotene synthase gene identified in the draft genome of Aurantiochytrium sp. Strain KH105. Genes 9 (4), 200. https://doi.org/10.3390/genes9040200 (2018).
-
Berman, J. et al. Nutritionally important carotenoids as consumer products. Phytochem. Rev. 14 (5), 727–743. https://doi.org/10.1007/s11101-014-9373-1 (2015).
-
Kaliyamoorthy, K. et al. PUFA and carotenoid producing thraustochytrids and their anti-microbial and antioxidant activities. Front. Mar. Sci. 10 https://doi.org/10.3389/fmars.2023.1126452 (2023).
-
Christian, P. Night blindness during pregnancy and subsequent mortality among women in nepal: effects of vitamin a and beta-carotene supplementation. Am. J. Epidemiol. 152 (6), 542–547. https://doi.org/10.1093/aje/152.6.542 (2000).
-
Prabhala, R. H., Maxey, V., Hicks, M. J. & Watson, R. R. Enhancement of the expression of activation markers on human peripheral blood mononuclear cells by in vitro culture with retinoids and carotenoids. J. Leukoc. Biol. 45 (3), 249–254. https://doi.org/10.1002/jlb.45.3.249 (1989).
-
Singh, K. N., Patil, S. & Barkate, H. Protective effects of Astaxanthin on skin: recent scientific evidence, possible mechanisms, and potential indications. J. Cosmet. Dermatol. 19 (1), 22–27. https://doi.org/10.1111/jocd.13019 (2020).
-
Kumar, S., Kumar, R., Kumari, A. & Panwar, A. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 62 (9), 1064–1082. https://doi.org/10.1002/jobm.202100391 (2022).
-
Farruggia, C. et al. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem. 62, 202–209. https://doi.org/10.1016/j.jnutbio.2018.09.005 (2018).
-
Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26 (3), 263–271. https://doi.org/10.1016/j.etap.2008.06.001 (2008).
-
Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C. & Barrio, R. J. Producing omega-3 polyunsaturated fatty acids: a review of sustainable sources and future trends for the EPA and DHA market. Resources 9 (12), 148. https://doi.org/10.3390/resources9120148 (2020).
-
Barreiro, C. & Barredo, J. L. Carotenoids production: a healthy and profitable industry. Methods Mol. Biol. 1852, 45–55. https://doi.org/10.1007/978-1-4939-8742-9_2 (2018).
-
Capelli, B., Bagchi, D. & Cysewski, G. R. Synthetic Astaxanthin is significantly inferior to algal-based Astaxanthin as an antioxidant and May not be suitable as a human nutraceutical supplement. Nutrafoods 12 (4), 145–152. https://doi.org/10.1007/s13749-013-0051-5 (2013).
-
Xu, X. et al. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl. Microbiol. Biotechnol. 104 (22), 9433–9447. https://doi.org/10.1007/s00253-020-10927-y (2020).
-
Sakamoto, T., Ikeda, Y., Masuda, N. & Sakuradani, E. Ethanol enhances Astaxanthin production by Aurantiochytrium sp. O5-1-1. J. Oleo Sci. 72 (4), ess22308. https://doi.org/10.5650/jos.ess22308 (2023).
-
Park, H. et al. Enhanced production of carotenoids using a thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst. Eng. 41 (9), 1355–1370. https://doi.org/10.1007/s00449-018-1963-7 (2018).
-
Fossier Marchan, L. et al. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol. Adv. 36 (1), 26–46. https://doi.org/10.1016/j.biotechadv.2017.09.003 (2018).
-
Aki, T. et al. Thraustochytrid as a potential source of carotenoids. J. Am. Oil Chemists’ Soc. 80 (8), 789–794. https://doi.org/10.1007/s11746-003-0773-2 (2003).
-
Kubo, Y. et al. Transcriptional responses of aurantiochytrium limacinum under light conditions. J. Appl. Microbiol. 132 (6), 4330–4337. https://doi.org/10.1111/jam.15527 (2022).
-
Wongsnansilp, T. & Khamcharoen, M. The effects of red–blue light on the growth and Astaxanthin production of a Haematococcus pluvialis strain isolated from Southern Thailand. Appl. Microbiol. 4 (4), 1745–1756. https://doi.org/10.3390/applmicrobiol4040117 (2024).
-
Zhou, X. et al. Astaxanthin accumulation in Microcystis aeruginosa under different light quality. Bioresour. Technol. 346, 126629. https://doi.org/10.1016/j.biortech.2021.126629 (2022).
-
Chen, J., Liu, L. & Wei, D. Enhanced production of Astaxanthin by Chromochloris Zofingiensis in a microplate-based culture system under high light irradiation. Bioresour. Technol. 245, 518–529. https://doi.org/10.1016/j.biortech.2017.08.102 (2017).
-
Castrillo, M. & Avalos, J. The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium Fujikuroi. PLOS ONE. 10 (3), e0119785. https://doi.org/10.1371/journal.pone.0119785 (2015).
-
Hall, C. A. S. & Benemann, J. R. Oil from algae? BioScience 61 (10), 741–742. https://doi.org/10.1525/bio.2011.61.10.2 (2011).
-
Song, Y. et al. Overexpression of the KAS Ⅲ-like gene YxwZ3 increases carotenoids production in Aurantiochytrium sp. SZU445. Ind. Crops Prod. 187, 115435. https://doi.org/10.1016/j.indcrop.2022.115435 (2022).
-
Ryu, B. G., Kim, K., Kim, J., Han, J. I. & Yang, J. W. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol. 129, 351–359. https://doi.org/10.1016/j.biortech.2012.11.049 (2013).
-
Yamasaki, T. et al. Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J. Biosci. Bioeng. 102 (4), 323–327. https://doi.org/10.1263/jbb.102.323 (2006).
-
Liang, Y. et al. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol. 101 (10), 3623–3627. https://doi.org/10.1016/j.biortech.2009.12.087 (2010).
-
Abad, S. & Turon, X. Biotechnological production of docosahexaenoic acid using Aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar. Drugs. 13 (12), 7275–7284. https://doi.org/10.3390/md13127064 (2015).
-
Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O. & da Silva César, A. Glycerol from biodiesel production: technological paths for sustainability. Renew. Sustain. Energy Rev. 88, 109–122. https://doi.org/10.1016/j.rser.2018.02.019 (2018).
-
Iyyappan, J. et al. Recent advances in microbial production of malic acid from renewable byproducts. Reviews Environ. Sci. Bio/Technology. 18 (3), 579–595. https://doi.org/10.1007/s11157-019-09503-2 (2019).
-
Tran, G. S. et al. Tuning selectivity toward three-carbon product of glycerol electrooxidation in Borate buffer through manipulating Borate/glycerol molar ratio. J. Catal. 438, 115715. https://doi.org/10.1016/j.jcat.2024.115715 (2024).
-
Li, J., Liu, R., Chang, G., Li, X., Chang, M., Liu, Y., … Wang, X. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 177, 51–57. https://doi.org/10.1016/j.biortech.2014.11.046.
-
Chi, Z., Pyle, D., Wen, Z., Frear, C. & Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42 (11), 1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008 (2007).
-
Yoshimi, T. et al. Improvement of Astaxanthin production in Aurantiochytrium limacinum by overexpression of the beta-carotene hydroxylase gene. Appl. Biochem. Biotechnol. 195 (2), 1255–1267. https://doi.org/10.1007/s12010-022-04172-4 (2023).
-
Manosak, R., Limpattayanate, S. & Hunsom, M. Sequential-refining of crude glycerol derived from waste used-oil Methyl ester plant via a combined process of chemical and adsorption. Fuel Process. Technol. 92 (1), 92–99. https://doi.org/10.1016/j.fuproc.2010.09.002 (2011).
-
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37 (8), 907–915. https://doi.org/10.1038/s41587-019-0201-4 (2019).
-
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33 (3), 290–295. https://doi.org/10.1038/nbt.3122 (2015).
-
Dellero, Y., Cagnac, O., Rose, S., Seddiki, K., Cussac, M., Morabito, C., … Amato,A. (2018). Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Research, 35, 125–141. https://doi.org/10.1016/j.algal.2018.08.018.
-
Heggeset, T. M. B. et al. Lipid and DHA-production in Aurantiochytrium sp. – responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci. Rep. 9 (1), 19470. https://doi.org/10.1038/s41598-019-55902-4 (2019).
-
Yin, F.-W., Zhan, C.-T., Huang, J., Sun, X.-L., Yin, L.-F., Zheng, W.-L., … Fu, Y.-Q.(2023). Efficient co-production of docosahexaenoic acid oil and carotenoids in Aurantiochytrium sp. using a light intensity gradient strategy. Applied Biochemistry and Biotechnology, 195(1), 623–638. https://doi.org/10.1007/s12010-022-04134-w.
-
Kubo, Y. et al. Enhanced production of Astaxanthin without decrease of DHA content in Aurantiochytrium limacinum by overexpressing multifunctional carotenoid synthase gene. Appl. Biochem. Biotechnol. 193 (1), 52–64. https://doi.org/10.1007/s12010-020-03403-w (2021).
-
Watanabe, K., Arafiles, K. H. V., Higashi, R., Okamura, Y., Tajima, T., Matsumura,Y., … Aki, T. (2018). Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information.Journal of Oleo Science, 67(5), 571–578. https://doi.org/10.5650/jos.ess17230.
-
Suen, Y. L., Tang, H., Huang, J. & Chen, F. Enhanced production of fatty acids and Astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J. Agric. Food Chem. 62 (51), 12392–12398. https://doi.org/10.1021/jf5048578 (2014).
-
Zhu, X., Meng, C., Du, H., Chen, L., Sun, F., Chen, W., … Li, D. (2022). Enhancement of astaxanthin production in Schizochytrium limacinum B4D1 under ethanol induction. Algal Research, 61, 102537. https://doi.org/10.1016/j.algal.2021.102537.
-
Yu, X. J. et al. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Appl. Biochem. Biotechnol. 177 (6), 1229–1240. https://doi.org/10.1007/s12010-015-1809-6 (2015).
-
Li, Z., Meng, T., Hang, W., Cao, X., Ni, H., Shi, Y., … He, N. (2021). Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. Algal Research, 58, 102415. https://doi.org/10.1016/j.algal.2021.102415.
-
Wang, L., Liu, Z., Jiang, H. & Mao, X. Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci. Technol. 111, 322–332. https://doi.org/10.1016/j.tifs.2021.02.077 (2021).
-
Rodriguez-Romero, J., Hedtke, M., Kastner, C., Müller, S. & Fischer, R. Fungi, hidden in soil or up in the air: light makes a difference. Annu. Rev. Microbiol. 64 (1), 585–610. https://doi.org/10.1146/annurev.micro.112408.134000 (2010).
-
Petersen, J. et al. The world of algae reveals a broad variety of Cryptochrome properties and functions. Front. Plant Sci. 12 https://doi.org/10.3389/fpls.2021.766509 (2021).
-
Ishibashi, Y., Goda, H., Hamaguchi, R., Sakaguchi, K., Sekiguchi, T., Ishiwata, Y.,… Ito, M. (2021). PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA. Communications Biology, 4(1),1378. https://doi.org/10.1038/s42003-021-02857-w.
-
Li, J., Liu, R., Chang, G., Li, X., Chang, M., Liu, Y., … Wang, X. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology,177, 51–57. https://doi.org/10.1016/j.biortech.2014.11.046.
-
Chen, L. et al. Transcriptome analyses reveal the DHA enhancement mechanism in Schizochytrium limacinum LD11 mutant. Algal Res. 67, 102868. https://doi.org/10.1016/j.algal.2022.102868 (2022).
