Purple LED light and crude glycerol synergistically enhance astaxanthin production in Aurantiochytrium limacinum

purple-led-light-and-crude-glycerol-synergistically-enhance-astaxanthin-production-in-aurantiochytrium-limacinum
Purple LED light and crude glycerol synergistically enhance astaxanthin production in Aurantiochytrium limacinum

References

  1. Yokoyama, R. & Honda, D. Taxonomic rearrangement of the genus Schizochytrium sensu Lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. Nov Mycoscience. 48 (4), 199–211. https://doi.org/10.1007/S10267-006-0362-0 (2007).

    Google Scholar 

  2. Morabito, C. et al. The lipid metabolism in thraustochytrids. Prog. Lipid Res. 76, 101007. https://doi.org/10.1016/j.plipres.2019.101007 (2019).

    Google Scholar 

  3. Honda, D., Yokochi, T., Nakahara, T., Erata, M. & Higashihara, T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a Mangrove area in the West Pacific ocean. Mycol. Res. 102 (4), 439–448. https://doi.org/10.1017/S0953756297005170 (1998).

    Google Scholar 

  4. Otagiri, M., Khalid, A., Moriya, S., Osada, H. & Takahashi, S. Novel squalene-producing thraustochytrids found in Mangrove water. Biosci. Biotechnol. Biochem. 81 (10), 2034–2037. https://doi.org/10.1080/09168451.2017.1359485 (2017).

    Google Scholar 

  5. Bartosova, Z. et al. Combined metabolome and lipidome analyses for in-depth characterization of lipid accumulation in the DHA producing Aurantiochytrium sp. T66. Metabolites 11 (3), 135. https://doi.org/10.3390/metabo11030135 (2021).

    Google Scholar 

  6. Aasen, I. M. et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl. Microbiol. Biotechnol. 100 (10), 4309–4321. https://doi.org/10.1007/s00253-016-7498-4 (2016).

    Google Scholar 

  7. Raghukumar, S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar. Biotechnol. 10 (6), 631–640. https://doi.org/10.1007/s10126-008-9135-4 (2008).

    Google Scholar 

  8. Iwasaka, H. et al. A possible trifunctional β-carotene synthase gene identified in the draft genome of Aurantiochytrium sp. Strain KH105. Genes 9 (4), 200. https://doi.org/10.3390/genes9040200 (2018).

    Google Scholar 

  9. Berman, J. et al. Nutritionally important carotenoids as consumer products. Phytochem. Rev. 14 (5), 727–743. https://doi.org/10.1007/s11101-014-9373-1 (2015).

    Google Scholar 

  10. Kaliyamoorthy, K. et al. PUFA and carotenoid producing thraustochytrids and their anti-microbial and antioxidant activities. Front. Mar. Sci. 10 https://doi.org/10.3389/fmars.2023.1126452 (2023).

  11. Christian, P. Night blindness during pregnancy and subsequent mortality among women in nepal: effects of vitamin a and beta-carotene supplementation. Am. J. Epidemiol. 152 (6), 542–547. https://doi.org/10.1093/aje/152.6.542 (2000).

    Google Scholar 

  12. Prabhala, R. H., Maxey, V., Hicks, M. J. & Watson, R. R. Enhancement of the expression of activation markers on human peripheral blood mononuclear cells by in vitro culture with retinoids and carotenoids. J. Leukoc. Biol. 45 (3), 249–254. https://doi.org/10.1002/jlb.45.3.249 (1989).

    Google Scholar 

  13. Singh, K. N., Patil, S. & Barkate, H. Protective effects of Astaxanthin on skin: recent scientific evidence, possible mechanisms, and potential indications. J. Cosmet. Dermatol. 19 (1), 22–27. https://doi.org/10.1111/jocd.13019 (2020).

    Google Scholar 

  14. Kumar, S., Kumar, R., Kumari, A. & Panwar, A. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 62 (9), 1064–1082. https://doi.org/10.1002/jobm.202100391 (2022).

    Google Scholar 

  15. Farruggia, C. et al. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem. 62, 202–209. https://doi.org/10.1016/j.jnutbio.2018.09.005 (2018).

    Google Scholar 

  16. Castro-González, M. I. & Méndez-Armenta, M. Heavy metals: implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26 (3), 263–271. https://doi.org/10.1016/j.etap.2008.06.001 (2008).

    Google Scholar 

  17. Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C. & Barrio, R. J. Producing omega-3 polyunsaturated fatty acids: a review of sustainable sources and future trends for the EPA and DHA market. Resources 9 (12), 148. https://doi.org/10.3390/resources9120148 (2020).

    Google Scholar 

  18. Barreiro, C. & Barredo, J. L. Carotenoids production: a healthy and profitable industry. Methods Mol. Biol. 1852, 45–55. https://doi.org/10.1007/978-1-4939-8742-9_2 (2018).

    Google Scholar 

  19. Capelli, B., Bagchi, D. & Cysewski, G. R. Synthetic Astaxanthin is significantly inferior to algal-based Astaxanthin as an antioxidant and May not be suitable as a human nutraceutical supplement. Nutrafoods 12 (4), 145–152. https://doi.org/10.1007/s13749-013-0051-5 (2013).

    Google Scholar 

  20. Xu, X. et al. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl. Microbiol. Biotechnol. 104 (22), 9433–9447. https://doi.org/10.1007/s00253-020-10927-y (2020).

    Google Scholar 

  21. Sakamoto, T., Ikeda, Y., Masuda, N. & Sakuradani, E. Ethanol enhances Astaxanthin production by Aurantiochytrium sp. O5-1-1. J. Oleo Sci. 72 (4), ess22308. https://doi.org/10.5650/jos.ess22308 (2023).

    Google Scholar 

  22. Park, H. et al. Enhanced production of carotenoids using a thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst. Eng. 41 (9), 1355–1370. https://doi.org/10.1007/s00449-018-1963-7 (2018).

    Google Scholar 

  23. Fossier Marchan, L. et al. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol. Adv. 36 (1), 26–46. https://doi.org/10.1016/j.biotechadv.2017.09.003 (2018).

    Google Scholar 

  24. Aki, T. et al. Thraustochytrid as a potential source of carotenoids. J. Am. Oil Chemists’ Soc. 80 (8), 789–794. https://doi.org/10.1007/s11746-003-0773-2 (2003).

    Google Scholar 

  25. Kubo, Y. et al. Transcriptional responses of aurantiochytrium limacinum under light conditions. J. Appl. Microbiol. 132 (6), 4330–4337. https://doi.org/10.1111/jam.15527 (2022).

    Google Scholar 

  26. Wongsnansilp, T. & Khamcharoen, M. The effects of red–blue light on the growth and Astaxanthin production of a Haematococcus pluvialis strain isolated from Southern Thailand. Appl. Microbiol. 4 (4), 1745–1756. https://doi.org/10.3390/applmicrobiol4040117 (2024).

    Google Scholar 

  27. Zhou, X. et al. Astaxanthin accumulation in Microcystis aeruginosa under different light quality. Bioresour. Technol. 346, 126629. https://doi.org/10.1016/j.biortech.2021.126629 (2022).

    Google Scholar 

  28. Chen, J., Liu, L. & Wei, D. Enhanced production of Astaxanthin by Chromochloris Zofingiensis in a microplate-based culture system under high light irradiation. Bioresour. Technol. 245, 518–529. https://doi.org/10.1016/j.biortech.2017.08.102 (2017).

    Google Scholar 

  29. Castrillo, M. & Avalos, J. The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium Fujikuroi. PLOS ONE. 10 (3), e0119785. https://doi.org/10.1371/journal.pone.0119785 (2015).

    Google Scholar 

  30. Hall, C. A. S. & Benemann, J. R. Oil from algae? BioScience 61 (10), 741–742. https://doi.org/10.1525/bio.2011.61.10.2 (2011).

    Google Scholar 

  31. Song, Y. et al. Overexpression of the KAS Ⅲ-like gene YxwZ3 increases carotenoids production in Aurantiochytrium sp. SZU445. Ind. Crops Prod. 187, 115435. https://doi.org/10.1016/j.indcrop.2022.115435 (2022).

    Google Scholar 

  32. Ryu, B. G., Kim, K., Kim, J., Han, J. I. & Yang, J. W. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol. 129, 351–359. https://doi.org/10.1016/j.biortech.2012.11.049 (2013).

    Google Scholar 

  33. Yamasaki, T. et al. Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J. Biosci. Bioeng. 102 (4), 323–327. https://doi.org/10.1263/jbb.102.323 (2006).

    Google Scholar 

  34. Liang, Y. et al. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol. 101 (10), 3623–3627. https://doi.org/10.1016/j.biortech.2009.12.087 (2010).

    Google Scholar 

  35. Abad, S. & Turon, X. Biotechnological production of docosahexaenoic acid using Aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar. Drugs. 13 (12), 7275–7284. https://doi.org/10.3390/md13127064 (2015).

    Google Scholar 

  36. Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O. & da Silva César, A. Glycerol from biodiesel production: technological paths for sustainability. Renew. Sustain. Energy Rev. 88, 109–122. https://doi.org/10.1016/j.rser.2018.02.019 (2018).

    Google Scholar 

  37. Iyyappan, J. et al. Recent advances in microbial production of malic acid from renewable byproducts. Reviews Environ. Sci. Bio/Technology. 18 (3), 579–595. https://doi.org/10.1007/s11157-019-09503-2 (2019).

    Google Scholar 

  38. Tran, G. S. et al. Tuning selectivity toward three-carbon product of glycerol electrooxidation in Borate buffer through manipulating Borate/glycerol molar ratio. J. Catal. 438, 115715. https://doi.org/10.1016/j.jcat.2024.115715 (2024).

    Google Scholar 

  39. Li, J., Liu, R., Chang, G., Li, X., Chang, M., Liu, Y., … Wang, X. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 177, 51–57. https://doi.org/10.1016/j.biortech.2014.11.046.

  40. Chi, Z., Pyle, D., Wen, Z., Frear, C. & Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42 (11), 1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008 (2007).

    Google Scholar 

  41. Yoshimi, T. et al. Improvement of Astaxanthin production in Aurantiochytrium limacinum by overexpression of the beta-carotene hydroxylase gene. Appl. Biochem. Biotechnol. 195 (2), 1255–1267. https://doi.org/10.1007/s12010-022-04172-4 (2023).

    Google Scholar 

  42. Manosak, R., Limpattayanate, S. & Hunsom, M. Sequential-refining of crude glycerol derived from waste used-oil Methyl ester plant via a combined process of chemical and adsorption. Fuel Process. Technol. 92 (1), 92–99. https://doi.org/10.1016/j.fuproc.2010.09.002 (2011).

    Google Scholar 

  43. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37 (8), 907–915. https://doi.org/10.1038/s41587-019-0201-4 (2019).

    Google Scholar 

  44. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33 (3), 290–295. https://doi.org/10.1038/nbt.3122 (2015).

    Google Scholar 

  45. Dellero, Y., Cagnac, O., Rose, S., Seddiki, K., Cussac, M., Morabito, C., … Amato,A. (2018). Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Research, 35, 125–141. https://doi.org/10.1016/j.algal.2018.08.018.

  46. Heggeset, T. M. B. et al. Lipid and DHA-production in Aurantiochytrium sp. – responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci. Rep. 9 (1), 19470. https://doi.org/10.1038/s41598-019-55902-4 (2019).

    Google Scholar 

  47. Yin, F.-W., Zhan, C.-T., Huang, J., Sun, X.-L., Yin, L.-F., Zheng, W.-L., … Fu, Y.-Q.(2023). Efficient co-production of docosahexaenoic acid oil and carotenoids in Aurantiochytrium sp. using a light intensity gradient strategy. Applied Biochemistry and Biotechnology, 195(1), 623–638. https://doi.org/10.1007/s12010-022-04134-w.

  48. Kubo, Y. et al. Enhanced production of Astaxanthin without decrease of DHA content in Aurantiochytrium limacinum by overexpressing multifunctional carotenoid synthase gene. Appl. Biochem. Biotechnol. 193 (1), 52–64. https://doi.org/10.1007/s12010-020-03403-w (2021).

    Google Scholar 

  49. Watanabe, K., Arafiles, K. H. V., Higashi, R., Okamura, Y., Tajima, T., Matsumura,Y., … Aki, T. (2018). Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information.Journal of Oleo Science, 67(5), 571–578. https://doi.org/10.5650/jos.ess17230.

  50. Suen, Y. L., Tang, H., Huang, J. & Chen, F. Enhanced production of fatty acids and Astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J. Agric. Food Chem. 62 (51), 12392–12398. https://doi.org/10.1021/jf5048578 (2014).

    Google Scholar 

  51. Zhu, X., Meng, C., Du, H., Chen, L., Sun, F., Chen, W., … Li, D. (2022). Enhancement of astaxanthin production in Schizochytrium limacinum B4D1 under ethanol induction. Algal Research, 61, 102537. https://doi.org/10.1016/j.algal.2021.102537.

  52. Yu, X. J. et al. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Appl. Biochem. Biotechnol. 177 (6), 1229–1240. https://doi.org/10.1007/s12010-015-1809-6 (2015).

    Google Scholar 

  53. Li, Z., Meng, T., Hang, W., Cao, X., Ni, H., Shi, Y., … He, N. (2021). Regulation of glucose and glycerol for production of docosahexaenoic acid in Schizochytrium limacinum SR21 with metabolomics analysis. Algal Research, 58, 102415. https://doi.org/10.1016/j.algal.2021.102415.

  54. Wang, L., Liu, Z., Jiang, H. & Mao, X. Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci. Technol. 111, 322–332. https://doi.org/10.1016/j.tifs.2021.02.077 (2021).

    Google Scholar 

  55. Rodriguez-Romero, J., Hedtke, M., Kastner, C., Müller, S. & Fischer, R. Fungi, hidden in soil or up in the air: light makes a difference. Annu. Rev. Microbiol. 64 (1), 585–610. https://doi.org/10.1146/annurev.micro.112408.134000 (2010).

    Google Scholar 

  56. Petersen, J. et al. The world of algae reveals a broad variety of Cryptochrome properties and functions. Front. Plant Sci. 12 https://doi.org/10.3389/fpls.2021.766509 (2021).

  57. Ishibashi, Y., Goda, H., Hamaguchi, R., Sakaguchi, K., Sekiguchi, T., Ishiwata, Y.,… Ito, M. (2021). PUFA synthase-independent DHA synthesis pathway in Parietichytrium sp. and its modification to produce EPA and n-3DPA. Communications Biology, 4(1),1378. https://doi.org/10.1038/s42003-021-02857-w.

  58. Li, J., Liu, R., Chang, G., Li, X., Chang, M., Liu, Y., … Wang, X. (2015). A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology,177, 51–57. https://doi.org/10.1016/j.biortech.2014.11.046.

  59. Chen, L. et al. Transcriptome analyses reveal the DHA enhancement mechanism in Schizochytrium limacinum LD11 mutant. Algal Res. 67, 102868. https://doi.org/10.1016/j.algal.2022.102868 (2022).

    Google Scholar 

Download references