References
-
Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).
-
Sandrasekaran, M., Thilagam, V. K. & Khola, O. P. Soil and water conservation in India: Strategies and research challenges. J. Soil Water Conserv. 16, 312 (2017).
-
Fertiliser Association of India (FAI). Press Note 2023. The Fertiliser Association of India, New Delhi (2023).
-
Dev, P., Paliyal, S. S. & Rana, N. Subhash palekar natural farming – scope, efficacy and critics. Environ. Conserv. J. 23, 99–106 (2022).
-
Kumar, R. et al. Adoption of Natural Farming and its Effect on Crop Yield and Farmers’ Livelihood in India. ICAR–National Academy of Agricultural Research Management, Hyderabad, India (2020).
-
Saharan, B. S. et al. Application of Jeevamrit improves soil properties in zero budget natural farming fields. Agriculture 13, 196 (2023).
-
Darjee, S. et al. Empirical observation of natural farming inputs on nitrogen uptake, soil health, and crop yield of rice-wheat cropping system in the organically managed Inceptisol of Trans Gangetic plain. Front. Sustain. Food Syst. 8, 1324798 (2024).
-
Shu, X. et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 829, 154627 (2022).
-
Liu, W. et al. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants 12, 3790 (2023).
-
Song, D. et al. Organic amendment regulates soil microbial biomass and activity in wheat-maize and wheat-soybean rotation systems. Agric. Ecosyst. Environ. 333, 107974 (2022).
-
Pandia, S., Trivedi, A., Sharma, S. K. & Yadav, S. Evaluation of Jeevamrut and its constituents against alternaria leaf spot of mungbean in-vitro and under cage house condition in Rajasthan. Int. J. Curr. Microbiol. Appl. Sci. 8, 2240–2251 (2019).
-
Xu, J., Li, Y. & Li, L. A comprehensive review of the effects of organic amendments on soil health and fertility: Mechanisms, greenhouse gas emissions, and implications for sustainable agriculture. Agronomy 15, 2705 (2025).
-
Shraddha, et al. Impact of fermented organic formulations combined with inorganic fertilizers on broccoli (Brassica oleracea L. var. italica Plenck) cv. Palam Samridhi. Heliyon 9, e20321 (2023).
-
Kaushal, N. et al. Jeevamrit: A sustainable alternative to chemical fertilizers for marigold (Tagetes erecta cv. Siracole) cultivation under mid-hills of Himachal Pradesh. Horticulturae 10, 846 (2024).
-
Sarkar, S. et al. Natural and organic input-based integrated nutrient-management practices enhance the productivity and soil quality index of rice–mustard–green gram cropping system. Land 13, 1933 (2024).
-
Smith, J., Yeluripati, J., Smith, P. & Nayak, D. R. Potential yield challenges to scale-up of zero budget natural farming. Nat. Sustain. 3, 247–252 (2020).
-
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
-
Heberle, H., Meirelles, G. V., Da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169 (2015).
-
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
-
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).
-
Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).
-
Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv 672295 (2019). Preprint
-
Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).
-
Rho, M., Tang, H. & Ye, Y. FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191–e191 (2010).
-
Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).
-
Jensen, L. J. et al. eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, D250–D254 (2007).
-
Tamames, J. & Puente-Sánchez, F. SqueezeMeta, A highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349 (2019).
-
Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).
-
Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
-
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
-
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
-
Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).
-
Arkin, A. P. et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).
-
Watanabe, F. S. & Olsen, S. R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 29, 677–678 (1965).
-
Rajawat, M. V. S., Singh, S., Tyagi, S. P. & Saxena, A. K. A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 26, 768–773 (2016).
-
Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol 26, 192 (1951).
-
Papade, S. E., Mohapatra, B. & Phale, P. S. Pseudomonas and Acinetobacter spp. capable of metabolizing aromatics displays multifarious plant growth promoting traits: Insights on strategizing consortium-based application to agro-ecosystems. Environ. Technol. Innov. 36, 103786 (2024).
-
Hall, T. B. I. & Carlsbad, C. J. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
-
Hammer, Ø. et al. PAST: Paleontological statistics software package for education and data analysis. Palaeont. Electr. 4, 9 (2001).
-
Feng, K. et al. iNAP: An integrated network analysis pipeline for microbiome studies. iMeta 1, e13 (2022).
-
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
-
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).
-
Lu, Y. et al. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 51, W310–W318 (2023).
-
Pang, Z. et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 52, W398–W406 (2024).
-
Lakshmanan, R. et al. Optimization, characterization and quantification of indole acetic acid produced by a potential plant growth promoting rhizobacterium Bacillus safensis YKS2 from Yercaud Hills, Eastern Ghats. J. Pure Appl. Microbiol. 16, 1998–2009 (2022).
-
Shan, Y. et al. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae. BMC Biol. 22, 116 (2024).
-
Mussa, A., Million, T. & Assefa, F. Rhizospheric bacterial isolates of grass pea (Lathyrus sativus L.) endowed with multiple plant growth promoting traits. J. Appl. Microbiol. 125, 1786–1801 (2018).
-
Boss, B. L., Wanees, A. E., Zaslow, S. J., Normile, T. G. & Izquierdo, J. A. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genom. 23, 508 (2022).
-
Sidhu, A. S., Shard, D., Aulakh, C. S., Bhullar, S. S. & Singh, S. Evaluating the sustainability of natural, organic and conventional farming practices: A comparative study in maize-wheat cropping system in North-west India. Environ. Dev. Sustain. (2025).
-
Xu, Z. & Tsang, D. C. W. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. Eco-Environ. Health 3, 59–76 (2024).
-
Tong, Y. et al. Bio-organic fertilizer enhances soil mineral solubilization, microbial community stability, and fruit quality in an 8-year watermelon continuous cropping system. Biol. Fertil. Soils 61, 747–760 (2025).
-
Dhiman, S., Kumar, S., Baliyan, N., Dheeman, S. & Maheshwari, D. K. Cattle dung manure microbiota as a substitute for mineral nutrients and growth management practices in plants. In Endophytes: Mineral nutrient management, Volume 3 Vol. 26 (eds Maheshwari, D. K. & Dheeman, S.) 77–103 (Springer, 2021).
-
Cory, R. M. et al. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol. 44, 3683–3689 (2010).
-
Khalid, R. A., Patrick, W. H. & Gambrell, R. P. Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuar. Coast. Mar. Sci. 6, 21–35 (1978).
-
Grzyb, A., Wolna-Maruwka, A. & Niewiadomska, A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 11, 1415 (2021).
-
Coby, A. J., Picardal, F., Shelobolina, E., Xu, H. & Roden, E. E. Repeated anaerobic microbial redox cycling of iron. Appl. Environ. Microbiol. 77, 6036–6042 (2011).
-
Wang, M., Song, G., Zheng, Z., Mi, X. & Song, Z. Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Sci. Rep. 14, 32037 (2024).
-
Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).
-
Wilpiszeski, R. L. et al. Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 85, e00324-e419 (2019).
-
Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).
-
Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).
-
Conde-Pérez, K. et al. In-depth analysis of the role of the acinetobactin cluster in the virulence of Acinetobacter baumannii. Front. Microbiol. 12, 752070 (2021).
-
Peng, R., Zhu, Q., Li, S. & Liu, H. Nitrate concentration mediates iron transformation by an iron-oxidizing–reducing bacterium in the Fe (II)–Fe (III) co-existing system. Environ. Sci. Process. Impacts 27, 2941–2954 (2025).
-
Wu, T. et al. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 9, 1087 (2018).
-
Zhang, M., Li, A., Yao, Q., Xiao, B. & Zhu, H. Pseudomonas oligotrophica sp. Nov., a novel denitrifying bacterium possessing nitrogen removal capability under low carbon-nitrogen ratio condition. Front. Microbiol. 13, 882890 (2022).
-
Kalidasan, V., Joseph, N., Kumar, S., Awang Hamat, R. & Neela, V. K. Iron and virulence in Stenotrophomonas Maltophilia: all we know so far. Front. Cell. Infect. Microbiol. 8, 401 (2018).
-
Xiao, Y. et al. Comparative genomic analysis of Stenotrophomonas maltophilia strain W18 reveals its adaptative genomic features for degrading polycyclic aromatic hydrocarbons. Microbiol. Spectr. 9, e01420-e1421 (2021).
-
Caskey, W. H. & Tiedje, J. M. The reduction of nitrate to ammonium by a clostridium sp. Isolated from soil. Microbiology 119, 217–223 (1980).
-
Li, M.-J., Wei, M.-Y., Fan, X.-T. & Zhou, G.-W. Underestimation about the contribution of nitrate reducers to iron cycling indicated by Enterobacter strain. Molecules 27, 5581 (2022).
-
He, H., Carlson, A. L., Nielsen, P. H., Zhou, J. & Daigger, G. T. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. Water Environ. Res. 94, e10822 (2022).
-
Philippot, L. Denitrifying genes in bacterial and Archaeal genomes. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1577, 355–376 (2002).
-
Chen, J.-S., Toth, J. & Kasap, M. Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J. Ind. Microbiol. Biotechnol. 27, 281–286 (2001).
-
Xie, F., Ma, H., Quan, S., Liu, D. & Chen, G. Comamonas phosphati sp. Nov., isolated from a phosphate mine. Int. J. Syst. Evol. Microbiol. 66, 456–461 (2016).
-
Suliasih, & Widawati, S. Inorganic and organic phosphate solubilization potential of Stenotrophomonas maltophilia. IOP Conf. Ser. Earth Environ. Sci. 948, 012054 (2021).
-
Bhattacharya, S., Bachani, P., Jain, D., Patidar, S. K. & Mishra, S. Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm. Int. J. Miner. Process. 152, 53–57 (2016).
-
Nwokeh, U. J., Okoro, I. G. & Orodeji, C. U. Isolation, identification and phylogenetic characterization of potassium-solubilizing rhizobacteria isolated from the roots of Mimosa indica weed. FUDMA J. Sci. 7, 280–285 (2023).
-
Wu, Y., Zaiden, N. & Cao, B. The core- and pan-genomic analyses of the genus Comamonas: From environmental adaptation to potential virulence. Front. Microbiol. 9, 3096 (2018).
-
Allison, N., O’Donnell, M. J. & Fewson, C. A. Membrane-bound lactate dehydrogenases and mandelate dehydrogenases of Acinetobacter calcoaceticus. Purification and properties. Biochem. J. 231, 407–416 (1985).
-
Liew, F. et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40, 104–114 (2017).
-
Xiong, W., Reyes, L. H., Michener, W. E., Maness, P. & Chou, K. J. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115, 1755–1763 (2018).
-
Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3, 75 (2013).
-
Gaddy, J. A. et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect. Immun. 80, 1015–1024 (2012).
-
Nas, M. Y. & Cianciotto, N. P. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. Microbiology 163, 1590–1603 (2017).
-
Glickmann, E. et al. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant. Microbe Interact. 11, 156–162 (1998).
-
Spaepen, S. & Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3, a001438–a001438 (2011).
-
Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R. & Harwood, V. J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76, 685–706 (2012).
-
Ueki, A. Paludibacter propionicigenes gen. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56, 39–44 (2006).
-
Patakova, P., Linhova, M., Rychtera, M., Paulova, L. & Melzoch, K. Novel and neglected issues of acetone–butanol–ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol. Adv. 31, 58–67 (2013).
-
Soares, R. et al. Antibiotic resistance of enterococcus species in ornamental animal feed. Animals 13, 1761 (2023).
-
Petit, E. et al. Genome and transcriptome of Clostridium phytofermentans, catalyst for the direct conversion of plant feedstocks to fuels. PLoS ONE 10, e0118285 (2015).
-
Doloman, A., Boeren, S., Miller, C. D. & Sousa, D. Z. Stimulating effect of Trichococcus flocculiformis on a coculture of Syntrophomonas wolfei and Methanospirillum hungatei. Appl. Environ. Microbiol. 88, e00391-e422 (2022).
-
Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. & Boudabous, A. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann. Microbiol. 66, 1087–1097 (2016).
-
Devi, S. et al. Screening for multifarious plant growth promoting and biocontrol attributes in Bacillus strains isolated from indo gangetic soil for enhancing growth of rice crops. Microorganisms 11, 1085 (2023).
-
Rizzi, A., Roy, S., Bellenger, J.-P. & Beauregard, P. B. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Appl. Environ. Microbiol. 85, e02439-e2518 (2019).
-
Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Fabra, A. & Taurian, T. Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L.) growth and phosphorus acquisition. Symbiosis 66, 89–97 (2015).
-
Lee, K.-E. et al. Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion. J. Microbiol. Biotechnol. 25, 1467–1475 (2015).
-
Pavic, A., Stankovic, S. & Marjanovic, Z. Biochemical characterization of a sphingomonad isolate from the ascocarp of white truffle (Tuber magnatum Pico). Arch. Biol. Sci. 63, 697–704 (2011).
-
Patel, M. et al. Zero budget natural farming components Jeevamrit and Beejamrit augment Spinacia oleracea L. (spinach) growth by ameliorating the negative impacts of the salt and drought stress. Front. Microbiol. 15, 1326390 (2024).
-
Warghane, A., Thakkar, J., Bhardwaj, G., Bhatt, V. & Chopade, B. A. Isolation and characterization of major cultivable bacteria from novel natural fertilizer with comprehensive nutrient analysis. J. Pure Appl. Microbiol. 19, 197–209 (2025).
-
Devanga Ragupathi, N. K., Muthuirulandi Sethuvel, D. P., Inbanathan, F. Y. & Veeraraghavan, B. Accurate differentiation of Escherichia coli and Shigella serogroups: Challenges and strategies. New Microbes New Infect. 21, 58–62 (2018).
