SBTM: epileptic seizure prediction from EEG signal using deep learning in blockchain-enabled smart healthcare monitoring with IoT networking

sbtm:-epileptic-seizure-prediction-from-eeg-signal-using-deep-learning-in-blockchain-enabled-smart-healthcare-monitoring-with-iot-networking
SBTM: epileptic seizure prediction from EEG signal using deep learning in blockchain-enabled smart healthcare monitoring with IoT networking

References

  1. Chen, M. et al. Blockchain-enabled healthcare system for detection of diabetes. J. Information Secur. Appl. 58, 102771 (2021).

    Google Scholar 

  2. Tripathi, G., Ahad, M. A. & Paiva, S. S2HS-A blockchain-based approach for smart healthcare system. In Healthcare, Elsevier 8(1), 100391 (2020).

    Google Scholar 

  3. Mekruksavanich, S. & Jitpattanakul, A. Effective Detection of Epileptic Seizures through EEG Signals Using Deep Learning Approaches. Mach. Learn. Knowl. Extr. 5, 1937–1952. https://doi.org/10.3390/make5040094 (2023).

    Google Scholar 

  4. Mohiyuddin, A., Javed, A.R., Chakraborty, C., Rizwan, M., Shabbir, M., and Nebhen, J. “Secure cloud storage for medical IoT data using adaptive neuro-fuzzy inference system,” International Journal of Fuzzy Systems. 1–13, 2021.

  5. Pandey, P. & Litoriya, R. Securing and authenticating healthcare records through blockchain technology. Cryptologia 44(4), 341–356 (2020).

    Google Scholar 

  6. Ahmed, B. et al. Ensemble machine learning based identification of Adult Epilepsy. Mathe. Model. Eng. Problems 10, 1 (2023).

    Google Scholar 

  7. Hussein, R., Lee, S. & Ward, R. Multi-channel vision transformer for epileptic seizure prediction. Biomedicines 10(7), 1551 (2022).

    Google Scholar 

  8. Mohanty, M. D. et al. Design of smart and secured healthcare service using deep learning with modified SHA-256 algorithm. In Healthcare 10, 1275 (2022).

    Google Scholar 

  9. Mallick, S. & Baths, V. Novel Deep Learning Framework for Detection of Epileptic Seizures using EEG Signals. Front. Comput. Neurosci. 18, 1340251 (2024).

    Google Scholar 

  10. Prasanna, C. S. L., Rahman, M. Z. U. & Bayleyegan, M. D. Brain Epileptic Seizure Detection using Joint CNN and Exhaustive Feature Selection with RNN-BLSTM Classifier. IEEE Access 11, 97990–98004 (2023).

    Google Scholar 

  11. Daoud, H., Williams, P., and Bayoumi, M. IoT-based efficient epileptic seizure prediction system using deep learning. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) 1–6 IEEE. 2020

  12. Rahman, M. A., Hossain, M. S., Islam, M. S., Alrajeh, N. A. & Muhammad, G. Secure and provenance enhanced internet of health things framework: A blockchain managed federated learning approach. IEEE Access 8, 205071–205087 (2020).

    Google Scholar 

  13. Usman, S. M., Khalid, S. & Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 136, 104710 (2021).

    Google Scholar 

  14. Ma, Y. et al. A multi-channel feature fusion CNN-Bi-LSTM Epilepsy EEG classification and prediction model based on attention mechanism. IEEE Access 11, 62855–62864 (2023).

    Google Scholar 

  15. D. Połap, G. Srivastava, A. Jolfaei, and R. M. Parizi. “Blockchain Technology and Neural Networks for the Internet of Medical Things,” IEEE INFOCOM 2020 – IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 508–513, 2020.

  16. Wang, J. et al. A multistage blockchain-based secure and trustworthy smart healthcare system using ECG characteristics. IEEE Internet of Things Magazine 4(3), 48–58 (2021).

    Google Scholar 

  17. Yedurkar, D. P., Metkar, S., Al-Turjman, F., Yardi, N. & Stephan, T. An IoT-based novel hybrid seizure detection approach for epileptic monitoring. IEEE Trans. Industr. Inf. 20(2), 1420–1431 (2023).

    Google Scholar 

  18. Prathaban, B. P., Balasubramanian, R. & Kalpana, R. ForeSeiz: An IoMT-based headband for Real-time epileptic seizure forecasting. Expert Syst. Appl. 188, 116083 (2022).

    Google Scholar 

  19. Singh, K. & Malhotra, J. IoT and cloud computing-based automatic epileptic seizure detection using HOS features-based random forest classification. J. Ambient. Intell. Humaniz. Comput. 14(11), 15497–15512 (2023).

    Google Scholar 

  20. Goyal, A., Kaushik, S. & Khan, R. IoT IoT-based cloud network for smart health care using an optimization algorithm. Informatics in Medicine Unlocked 27, 100792 (2021).

    Google Scholar 

  21. Ramkumar, M., Jamaesha, S. S., Gowtham, M. S. & Kumar, C. S. IoT and cloud computing-based automated epileptic seizure detection using optimized Siamese convolutional sparse autoencoder network. SIViP 18(4), 3509–3525 (2024).

    Google Scholar 

  22. Song, K. et al. An intelligent epileptic prediction system based on synchrosqueezed wavelet transform and multi-level feature CNN for smart healthcare IoT. Sensors 22(17), 6458 (2022).

    Google Scholar 

  23. Idrees, A. K., Idrees, S. K., Couturier, R. & Ali-Yahiya, T. An edge-fog computing-enabled lossless EEG data compression with epileptic seizure detection in IoMT networks. IEEE Internet Things J. 9(15), 13327–13337 (2022).

    Google Scholar 

  24. Xin, Qi., Shaohai, Hu., Liu, S., Zhao, L. & Zhang, Y.-D. An attention-based wavelet convolution neural network for epilepsy EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 957–966 (2022).

    Google Scholar 

  25. Basavaiah, J., Anthony, A. A., Mahadevaswamy, S. & Naveen Kumar, H. N. An efficient approach to an epilepsy seizure alert system using IoT and machine learning. Journal of Reliable Intelligent Environments 10(4), 449–461 (2024).

    Google Scholar 

  26. Khosravi, M., Parsaei, H., Rezaee, K. & Helfroush, M. S. Fusing convolutional learning and attention-based Bi-LSTM networks for early Alzheimer’s diagnosis from EEG signals towards IoMT. Sci. Rep. 14(1), 26002 (2024).

    Google Scholar 

  27. Rezaee, K., Azizi, E. & Haddadnia, J. Optimized seizure detection algorithm: a fast approach for onset of epileptic seizures in EEG signals using GT discriminant analysis and K-NN classifier. Journal of biomedical physics & engineering 6(2), 81 (2016).

    Google Scholar 

  28. Nemati, N., Meshgini, S., Rezaii, T. Y. & Afrouzian, R. Neonatal seizure detection from EEG using inception ResNetV2 feature extraction and XGBoost optimized with particle swarm optimization. Sci. Rep. 15(1), 41493 (2025).

    Google Scholar 

  29. Kode, H., Elleithy, K. & Almazedah, L. Epileptic Seizure detection in EEG signals using Machine Learning and Deep Learning Techniques. IEEE Access. 12, 80657–80668 (2024).

    Google Scholar 

  30. Daoud, H., Williams, P. and Bayoumi, M., “IoT-based efficient epileptic seizure prediction system using deep learning,” 2020 IEEE 6th World Forum on Internet of Things (WF-IoT)1–6, 2020

  31. Rajendran, V. G., Jayalalitha, S., Adalarasu, K. & Nirmalraj, T. Development of a single-channel EEG Acquisition system for BCI applications. Research Journal of Pharmacy and Technology 14(9), 4705–4709 (2021).

    Google Scholar 

  32. Xue, J. & Shen, B. A novel swarm intelligence optimization approach: Sparrow Search Algorithm. Systems Science & Control Engineering 8(1), 22–34 (2020).

    Google Scholar 

  33. Chu, S.C., Tsai, P.W., and Pan, J.S. Cat swarm optimization. In Pacific Rim international conference on artificial intelligence 854–858. Springer, Berlin, Heidelberg. 2006

  34. CHB-MIT Scalp EEG Database, https://archive.physionet.org/physiobank/database/chbmit/, Accessed on 2023.

Download references