References
-
Dvora, H. & Koffas, M. Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, 234–261 (Elsevier, 2013).
-
Walsh, C. T. Tailoring enzyme strategies and functional groups in biosynthetic pathways. Nat. Prod. Rep. 40, 326–386 (2023).
-
Nett, R. S. et al. Plant carbonic anhydrase-like enzymes in neuroactive alkaloid biosynthesis. Nature 624, 182–191 (2023).
-
De La Peña, R. et al. Complex scaffold remodeling in plant triterpene biosynthesis. Science 379, 361–368 (2023).
-
Robles, O. & Romo, D. Chemo-and site-selective derivatizations of natural products enabling biological studies. Nat. Prod. Rep. 31, 318–334 (2014).
-
Wang, S., Alseekh, S., Fernie, A. R. & Luo, J. The structure and function of major plant metabolite modifications. Mol. Plant 12, 899–919 (2019).
-
Kreis, W. & Munkert, J. Exploiting enzyme promiscuity to shape plant specialized metabolism. J. Exp. Bot. 70, 1435–1445 (2019).
-
Notebaart, R. A., Kintses, B., Feist, A. M. & Papp, B. Underground metabolism: network-level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49, 108–114 (2018).
-
Zhang, J. et al. Review on the diverse biological effects of glabridin. Drug Des. Dev. Ther. 2023, 15–37 (2023).
-
Simmler, C., Pauli, G. F. & Chen, S. N. Phytochemistry and biological properties of glabridin. Fitoterapia 90, 160–184 (2013).
-
Ji, W. H. et al. Total synthesis of (±)-glabridin. Synth. Commun. 44, 540–546 (2014).
-
Duigou, T., Du Lac, M., Carbonell, P. & Faulon, J.-L. RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47, D1229–D1235 (2019).
-
Sveshnikova, A., MohammadiPeyhani, H. & Hatzimanikatis, V. ARBRE: computational resource to predict pathways towards industrially important aromatic compounds. Metab. Eng. 72, 259–274 (2022).
-
Koch, M., Duigou, T. & Faulon, J.-L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2020).
-
Song, W. et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal. Chem. 89, 3146–3153 (2017).
-
Wang, X. et al. Crystal structure of isoflavone reductase from Alfalfa (Medicago sativa L.). J. Mol. Biol. 358, 1341–1352 (2006).
-
Shao, H., Dixon, R. A. & Wang, X. Crystal structure of vestitone reductase from Alfalfa (Medicago sativa L.). J. Mol. Biol. 369, 265–276 (2007).
-
Akashi, T., Koshimizu, S., Aoki, T. & Ayabe, S. Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett. 580, 5666–5670 (2006).
-
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
-
Lu, C. et al. Heterologous biosynthesis of medicarpin using engineered Saccharomyces cerevisiae. Synth. Syst. Biotechnol. 8, 749–756 (2023).
-
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
-
He, J. et al. Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from Psoralea corylifolia. Org. Biomol. Chem. 16, 6760–6766 (2018).
-
He, B. et al. Enzymatic pyran formation involved in Xiamenmycin biosynthesis. ACS Catal. 9, 5391–5399 (2019).
-
Huang, X. C. et al. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat. Commun. 15, 6864 (2024).
-
Zou, J. et al. Complete biosynthetic pathway of furochromones in Saposhnikovia divaricata and its evolutionary mechanism in Apiaceae plants. Nat. Commun. 16, 3109 (2025).
-
Akashi, T., Uchida, K. & Aoki, T. CYP71D8 and CYP82A2 catalyze the last committed step in biosynthesis of glyceollin isomers in soybean. Plant Biotechnol. 42, 51–56 (2025).
-
Xie, J. et al. Glyceollin biosynthesis in a plant chassis engineered for isoflavone production. Nat. Chem. Biol. 21, 1497–1508 (2025).
-
Sun, Y. et al. Elucidation and de novo reconstitution of glyceollin biosynthesis. Mol. Plant 18, 820–832 (2025).
-
Ding, Q. et al. The evolutionary origin of naturally occurring intermolecular Diels-Alderases from Morus alba. Nat. Commun. 15, 2492 (2024).
-
Nag, A. et al. Spatial transcriptional dynamics of geographically separated genotypes revealed key regulators of podophyllotoxin biosynthesis in. Ind. Crops Prod. 147, 112247 (2020).
-
Ikezawa, N., Iwasa, K. & Sato, F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J. Biol. Chem. 283, 8810–8821 (2008).
-
Qiu, S. et al. Functional evolution and diversification of CYP82D subfamily members have shaped flavonoid diversification in the genus Scutellaria. Plant Commun. 6, 101134 (2025).
-
Maloney, A. P. & VanEtten, H. D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol. Gen. Genet. 243, 506–514 (1994).
-
Tolleson, W. H., Doerge, D. R., Churchwell, M. I., Marques, M. M. & Roberts, D. W. Metabolism of biochanin A and formononetin by human liver microsomes in vitro. J. Agric. Food Chem. 50, 4783–4790 (2002).
-
Nagayoshi, H. et al. Preference for O-demethylation reactions in the oxidation of 2′-, 3′-, and 4′-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica 50, 1158–1169 (2020).
-
Chen, S. et al. Vps13 is required for the packaging of the ER into autophagosomes during ER-phagy. Proc. Natl. Acad. Sci. USA 117, 18530–18539 (2020).
-
Bar-Peled, L. & Kory, N. Principles and functions of metabolic compartmentalization. Nat. Metab. 4, 1232–1244 (2022).
-
Kistler, H. C. & Broz, K. Cellular compartmentalization of secondary metabolism. Front. Microbiol. 6, 68 (2015).
-
Roze, L. V., Chanda, A. & Linz, J. E. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet. Biol. 48, 35–48 (2011).
-
Liang, F. et al. Elucidation of the final steps in Taxol biosynthesis and its biotechnological production. Nat. Synth. 4, 1212–1222 (2025).
-
Narasimha, S. M., Malpani, T., Mohite, O. S., Nath, J. S. & Raman, K. Understanding flux switching in metabolic networks through an analysis of synthetic lethals. NPJ Syst. Biol. Appl. 10, 104 (2024).
-
Glasner, M. E., Truong, D. P. & Morse, B. C. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J. 287, 1323–1342 (2020).
-
Guzmán, G. I. et al. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol. Syst. Biol. 15, e8462 (2019).
-
Bowie, J. U. Stabilizing membrane proteins. Curr. Opin. Struct. Biol. 11, 397–402 (2001).
-
Kitagawa, I. et al. Chemical studies of Chinese licorice-roots. I. Elucidation of five new flavonoid constituents from the roots of Glycyrrhiza glabra L. collected in Xinjiang. Chem. Pharm. Bull. 42, 1056–1062 (1994).
-
Chin, Y. W. et al. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 55, 4691–4697 (2007).
-
Lu, H. Z. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019).
-
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–U354 (2012).
-
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
-
Chen, C. J. et al. TBtools-II: A one for all, all for one bioinformatics platform for biological big-data mining. Mol. Plant 16, 1733–1742 (2023).
-
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, https://doi.org/10.1093/gigascience/giab008 (2021).
-
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20, 238 (2019).
-
Edgar, R. C. High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. 13, 6968 (2022).
-
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
-
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).
-
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
-
Keilwagen, J., Hartung, F. & Grau, J. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods Mol. Biol. 1962, 161–177 (2019).
-
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
-
Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1053 (2019).
-
Gietz, R. & Schiestl, R. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
-
Cummins, P. L., Ramnarayan, K., Singh, U. & Gready, J. E. Molecular dynamics/free energy perturbation study on the relative affinities of the binding of reduced and oxidized NADP to dihydrofolate reductase. J. Am. Chem. Soc. 113, 8247–8256 (1991).
-
Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).
-
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).
-
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
-
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).
-
Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).
-
Kroll, A., Engqvist, M. K. M., Heckmann, D. & Lercher, M. J. Deep learning allows genome-scale prediction of Michaelis constants from structural features. Plos Biol. 19, https://doi.org/10.1371/journal.pbio.3001402 (2021).
