References
-
Mahajan, M., Kuiry, R. & Pal, P. K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Arom Plant. 18, 100255 (2020).
-
Balasubramaniam, T., Shen, G., Esmaeili, N. & Zhang, H. Plants’ response mechanisms to salinity stress. Plants 12 (12), 2253 (2023).
-
Khodabakhsh, F., Amooaghaie, R. & Mostajeran, A. Effect of hydro-and osmo-priming on membrane deterioration, proline accumulation and H2O2 scavenging enzymes in two salt stressed Chickpea cultivars. Environ. Eng. Manag J. 13(3). (2014).
-
Amooaghaie, R. & Tabatabaie, F. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of Heme Oxygenase. Protoplasma 254, 1791–1803 (2017).
-
Mardani-Korrani, F., Amooaghaie, R., Ahadi, A. & Ghanadian, M. RBOH-dependent signaling is involved in He-Ne laser-induced salt tolerance and production of Rosmarinic acid and carnosol in Salvia officinalis. BMC Plant. Biol. 24 (1), 798 (2024).
-
Amooaghaie, R. & Banisharif, A. Dose-dependent effect of He-Ne laser on Pb tolerance and phytoremediation potential of milk Thistle (Silybum Marianum L.) Gaertn. BMC Plant. Biol. 25, 1683 (2025).
-
Pirooz, P., Amooaghaie, R., Ahadi, A., Sharififar, F. & Torkzadeh-Mahani, M. Silicon and nitric oxide synergistically modulate the production of essential oil and Rosmarinic acid in Salvia officinalis under Cu stress. Protoplasma 259 (4), 905–916 (2022).
-
Amooaghaie, R. & Rajaie, N. Foliar application of yeast extract mitigates water deficit stress and elicits hypericin and phenolic production in Hypericum perforatum L. Sci. Rep. 15, 20896. https://doi.org/10.1038/s41598-025-06013-w (2025).
-
Amooaghaie, R. et al. Hybrid priming with He–Ne laser and hydrogen peroxide advances phenolic composition and antioxidant quality of Salvia officinalis under saline and non-saline condition. J. Plant. Grow. Regul. 43, 1–14 (2023).
-
Vafadar, F., Amooaghaie, R., Ehsanzadeh, P. & Ghanadian, M. Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyi Boiss. Biologia 75(12):2147–2158. (2020).
-
Kumar, K., Debnath, P., Singh, S. & Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 3, 570–585 (2023).
-
Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C. & Restani, P. Polyphenols and human health: the role of bioavailability. Nutrients 13 (1), 273 (2021).
-
Shahrajabian, M. H. & Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent. Adv. Food Nut Agri. 13 (2), 72–92 (2022).
-
Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M. C. & Rouphael, Y. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant. Sci. 9, 1782 (2018).
-
Prisa, D. & Spagnuolo, D. Plant production with microalgal biostimulants. Horticulturae 9, 829. https://doi.org/10.3390/horticulturae9070829 (2023).
-
Mendes, A., Spínola, M., Lordelo, M. & Prates, J. Chemical compounds, bioactivities, and applications of Chlorella vulgaris in food, feed and medicine. Appl. Sci. 14, 10810 (2024).
-
Baglieri, A. V. B. et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L). J. Appl. Phycol. 30, 1061–1071 (2018).
-
Arahou, F. et al. Spirulina-based biostimulants for sustainable agriculture: yield improvement and market trends. Bioenergy Res. 16 (3), 1401–1416 (2023).
-
Clementina, S. & Brunet, C. Promises and challenges of microalgal antioxidant production. Antioxidants 8(7):199 (2019). https://doi.org/10.3390/antiox8070199
-
Saini, D. K., Pabbi, S., Prakash, A. & Shukla, P. Synthetic biology applied to microalgae-based processes and products. In: Jacob-Lopes, E., Maroneze, M.M., Queiroz, M. I., Zepka, L.Q. (Eds). Handbook of microalgae-based Processes and Products (85–98). Academic. (2020).
-
SenousyHH et al. Algal bio-stimulants enhance salt tolerance in common bean: dissecting morphological, physiological, and genetic mechanisms for stress adaptation. Plants 12 (21), 3714 (2023).
-
Barbosa, M., Inácio, L. G., Afonso, C. & Maranhão, P. The microalga Dunaliella and its applications: a review. Appl. Phycol. 4 (1), 99–120 (2023).
-
Fonseca, Y. B. et al. Effect of the Seed Coating with Biomass of Dunaliella Salina on Early Plant Growth and in the Secondary Metabolites Content of Coriandrum Sativum Vol. 94, e20201735 (Anais da Academia Brasileira de Ciências, 2022).
-
Ismaiel, S. A. R., Khedr, F. G., Metwally, A. G. & Soror, A-F-S. Effect of biostimulants on soil characteristics, plant growth and yield of pea (Pisum sativum L.) under field conditions. Plant. Sci. Today. 9, 650–657 (2022).
-
Puglisi, I. et al. Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench? J. Appl. Phycol. 34 (2), 889–901 (2022).
-
Chamizo, S., Mugnai, G., Rossi, F., Certini, G. & De Philippis, R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front. Environ. Sci. 6, 49 (2018).
-
Suchithra, M. et al. Effectiveness of green microalgae as biostimulants and biofertilizer through foliar spray and soil drench method for tomato cultivation. South. Afr. J. Bot. 146, 740–750 (2022).
-
Sadak, A. & Şensoy, S. Utilization of microalgae [Chlorella vulgaris Beyerinck (Beijerinck)] on plant growth and nutrient uptake of garden Cress (Lepidium sativum L.) grown in different fertilizer applications. Int. J. Agri Environ. Food Sci. 6 (2), 240–245 (2022).
-
Plaza, B. M., Gómez-Serrano, C., Acién-Fernández, F. G. & Jimenez-Becker, S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1427-0 (2018).
-
Carillo, P. et al. Enhancing sustainability by improving plant salt tolerance through macro-and micro-algal biostimulants. Biology 9 (9), 253 (2020).
-
Kuşvuran, Ş. & Tuna, Ü. T. Microalgae (Chlorella vulgaris)-mediated seconder metabolites and antioxidative defense system improve plant growth and salt tolerance in melon. Int. J. Agri Nat. Sci. 14 (1), 33–46 (2021).
-
Abd-El Baky, H., Hussein, M. M. & El baroty, G. Induces of antioxidant compounds and salt tolerance in wheat plant, irrigated with seawater as response to application of microalgae spray. Am. J. Agric. Biol. Sci. 9, 127–137 (2014).
-
Hamouda, R. A. et al. Protective role of Spirulina platensis liquid extract against salinity stress effects on Triticum aestivum L. Green. Process. Synth. 11 (1), 648–658 (2022).
-
Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hort Plant. J. 7 (3), 221–231 (2021).
-
Santini, P., Corrado, G., Colla, G., Kyriacou, M. C. & Rouphael, Y. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front. Plant. Sci. 9, 1782. https://doi.org/10.3389/fpls.2018.01782 (2018).
-
Hassan, S. M., Ashour, M. & Soliman, A. Anticancer activity, antioxidant activity, mineral contents, vegetative and yield of Eruca sativa using foliar application of autoclaved cellular extract of Spirulina platensis extract, comparing to NPK fertilizers. J. Plant. Prod. 8 (4), 529–536 (2017).
-
Elbanna, H. M., Ahmed, O. K., Fayed, S. A. K., Hammam, K. A. M. & Yousef, R. S. Enhancing French Basil growth through synergistic foliar treatment with copper nanoparticles and Spirulina Sp. BMC Plant. Biol. 24 (1), 512 (2024).
-
Cavallero, A., Chelucci, E., Chiellini, C. & Gabriele, M. Exploring microalgae and endophyte as biostimulants: antioxidant and anti-inflammatory properties of Cannabis sativa L. sprouts under standard and enrichment conditions. Food Biosci. 62, 105138 (2024).
-
Allaq, A. A., Sidik, N. J., Abdul-Aziz, A. & Ahmed, I. A. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomed. Res. Th. 7 (9), 4016–4021 (2020).
-
Alinian, S., Razmjoo, J. & Zeinali, H. Flavonoids, anthocynins, phenolics and essential oil produced in Cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Indust Crop Prod. 81, 49–55 (2016).
-
Ghannadnia, M., Haddad, R., Zarinkamar, F. & Sharifi, M. Manganese treatment effects on terpene compounds of Cuminum cyminum flowers. Indust Crop Prod. 53, 65–70 (2014).
-
Bettaieb, I. et al. Essential oils, phenolics, and antioxidant activities of different parts of Cumin (Cuminum cyminum L). J. Agri Food Chem. 58 (19), 10410–10418 (2010).
-
Pandey, S., Patel, M. K., Mishra, A. & Jha, B. Physio-biochemical composition and untargeted metabolomics of Cumin (Cuminum cyminum L.) make it promising functional food and help in mitigating salinity stress. PloS One. 10 (12), e0144469 (2015).
-
Anagnostidis, K. & Komarek, J. Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Algol. Stud. / Arch. Hydrobiol. Suppl. 50–53, 327–472 (1988).
-
Heimann, K. & Huerlimann, R. Chapter 3 – Microalgal classification: major classes and genera of commercial microalgal species In: (ed Kim, S.) (ED) Handbook of Marine Microalgae 2015, Pages 25–41, Academic, https://doi.org/10.1016/B978-0-12-800776-1.00003-0
-
Coronado-Reyes, J. A., Salazar-torres, J. A., Juarez-Campos, B. J. & Gonzalez-Hernandez, J. C. Chlorella vulgaris, a microalgae important to be used in biotechnology: a review. Food Sci. Technol. Campinas. 42, e37320. https://doi.org/10.1590/fst.37320 (2022).
-
Jung, C. H. G. et al. Morphology and growth of Arthrospira platensis during cultivation in a flat-type bioreactor. Life 11 (6), 536. https://doi.org/10.3390/life11060536 (2021).
-
Jo, C. R. et al. Physiological, and biochemical characteristics of Dunaliella Salina DSTA20 from hypersaline environments of Taean salt Pond, Republic of Korea. Microorganisms 12, 2467. https://doi.org/10.3390/microorganisms12122467 (2024).
-
Rippka, R., Deruelles, J., Waterburg, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteira. J. Gen. Microbiol. 111, 1–16 (1979).
-
Zarrouk, C. Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur lacroissance et la photosynthese de Spirulina mixima. Master thesis. France: University of Paris; p. 83. (1966).
-
Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L. & Bruff, B. S. Effects of salts on the halophylic Alga Dunaliella viridis. J. Bacteriol. 95, 1461–1468 (1968).
-
Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592. https://doi.org/10.1042/bst0110591 (1983).
-
Please replace Valivand M, Amooaghaie R. because refernce of Heath is not about electrolyte leakageValivand M, Amooaghaie R. Sodium hydrosulfide modulates membrane integrity, cation homeostasis, and accumulation of phenolics and osmolytes in zucchini under nickel stress. J Plant Growth Regul 2021, 40:313–328. https:// doi. org/ 10. 1007/s00344- 020- 10101-8Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplastes. I. Kinetics and stoichiometry of fatty acid and peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1981).
-
Koleva, I. I., Van Beek, T. A., Linssen, J. P. & Groot Ad, Evstatieva, L. N. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal: Int. J. Plant. Chem. Biochem. Tech. 13 (1), 8–17 (2002).
-
Oyaizu, M. Studies on products of Browning reaction: antioxidative activity of products of Browning reaction prepared from glucosamine. Japan J. Nut. 44, 307–315 (1986).
-
Amooaghaie, R., Majidi, M. & Farhadian, S. Impact of nano-TiO2 on salt stress tolerance of Carum Copticum. J. Plant. Process. Func. 11 (48), 19–34 (2022).
-
Ghorbannejad, H. & Amooaghaie, R. Differential changes of proline content and activities of antioxidant enzymes results in varied salt-tolerance in Canola genotypes. J. Gen. Resource. 3 (1), 36–46 (2017).
-
Mutale-Joan, C. et al. Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 10, 2820 (2020).
-
Vieira, J. et al. Enhancing growth, nutrient uptake and flowering of Tagetes patula plants through the application of suspensions of Chlorella vulgaris. J. Appl. Phycol. :1–10. (2025).
-
Wang, C. et al. The active phytohormone in microalgae: the characteristics, efficient detection, and their adversity resistance applications. Molecules 27 (1), 46 (2021).
-
Swapnil, P., Meena, M., Singh, S. K., Dhuldhaj, U. P. & Marwal, A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Curr. Plant. Biol. 26, 100203 (2021).
-
Rachidi, F., Benhima, R., Sbabou, L. & El Arroussi, H. Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotech. Rep. 25, e00426 (2020).
-
Siringi, J., Turoop, L. & Njonge, F. Biostimulant effect of spirulina (Arthrospira platensis) on lettuce (Lactuca sativa) cultivated under Aquaponic system. SCIREA J. Biol. 7 (1), 23–40 (2022).
-
Barone, V. et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L). J. Appl. Phycol. 30, 1061–1071 (2018).
-
Fiorentino, S. et al. Effects of Microalgae as biostimulants on plant growth, content of antioxidant molecules and total antioxidant capacity in Chenopodium quinoa exposed to salt stress. Plants. 14(5):781. (2025).
