References
-
Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).
-
Wee, P. & Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 9, (2017).
-
Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20 (2018).
-
Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY™ technology. Curr. Opin. Biotechnol. 20, 692–699 (2009).
-
Rady, I., Siddiqui, I. A., Rady, M. & Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 402, 16–31 (2017).
-
Raghuraman, H. & Chattopadhyay, A. Melittin: a Membrane-active peptide with diverse functions. Biosci. Rep. 27, 189–223 (2007).
-
Guha, S. et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem. Pharmacol. 193, 114769 (2021).
-
Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev. 31, 173–194 (2012).
-
Wehbe, R. et al. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules 24, (2019).
-
Pandey, P., Khan, F., Khan, M. A., Kumar, R. & Upadhyay, T. K. An Updated Review Summarizing the Anticancer Efficacy of Melittin from Bee Venom in Several Models of Human Cancers. Nutrients 15, (2023).
-
Yin, H. et al. The hybrid oncolytic peptide NTP-385 potently inhibits adherent cancer cells by targeting the nucleus. Acta Pharmacol. Sin. 44, 201–210 (2023).
-
Yin, H. et al. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates. Bioorg. Chem. 138, 106674 (2023).
-
Qi, Y. K., Zheng, J. S. & Liu, L. Mirror-image protein and peptide drug discovery through mirror-image phage display. Chem 10, 2390–2407 (2024).
-
Fu, X. Y. et al. Three rounds of Stability-Guided optimization and systematical evaluation of oncolytic peptide LTX-315. J. Med. Chem. 67, 3885–3908 (2024).
-
Gajski, G., Garaj-Vrhovac, V. & Melittin A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 36, 697–705 (2013).
-
Soman, N. R. et al. Molecularly targeted nanocarriers deliver the cytolytic peptide Melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest. 119, 2830–2842 (2009).
-
Li, Z. J. et al. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J. Control Release. 148, 292–302 (2010).
-
Hallaji, M. et al. Targeted cancer treatment using a novel EGFR-specific Fc-fusion peptide based on GE11 peptide. Sci. Rep. 15, 5107 (2025).
-
Araste, F. et al. Peptide-based targeted therapeutics: focus on cancer treatment. J. Control Release. 292, 141–162 (2018).
-
Rizkallah, J. et al. Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives. Pharmaceutics 17, (2025).
-
Jadhav, V. et al. Bee venom loaded nanomaterials for cancer therapy: a novel approach. Discov Mater. 5, 92 (2025).
-
Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010).
-
Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).
-
Wessman, P., Strömstedt, A. A., Malmsten, M. & Edwards, K. Melittin-lipid bilayer interactions and the role of cholesterol. Biophys. J. 95, 4324–4336 (2008).
-
Sabapathy, T., Deplazes, E. & Mancera, R. L. Revisiting the interaction of Melittin with phospholipid bilayers: the effects of concentration and ionic strength. Int. J. Mol. Sci. 21, 746–766 (2020).
-
Park, M. H. et al. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate 71, 801–812 (2011).
-
Lim, H. N., Baek, S. B. & Jung, H. J. Bee venom and its peptide component Melittin suppress growth and migration of melanoma cells via Inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules 24, 929–942 (2019).
-
Li, X. et al. Melittin induces ferroptosis and ER stress-CHOP-mediated apoptosis in A549 cells. Free Radic Res. 56, 398–410 (2022).
-
Nikodijević, D. et al. Impact of bee venom and Melittin on apoptosis and biotransformation in colorectal carcinoma cell lines. Toxin Rev. 40, 1–8 (2019).
-
Askari, P., Namaei, M. H., Ghazvini, K. & Hosseini, M. In vitro and in vivo toxicity and antibacterial efficacy of Melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol. Toxicol. 22, 42 (2021).
-
Cheng, B. & Xu, P. Redox-Sensitive nanocomplex for targeted delivery of Melittin. Toxins 12, 582–595 (2020).
-
Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer. 7, 654–658 (2007).
-
Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, 134–139 (2003).
-
Harding, F. A., Stickler, M. M., Razo, J. & DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).
-
Hallaji, M., Parhamfar, M., Raoufi, E. & Abtahi, H. Cloning and High-Level expression of the enzymatic region of phytase in E. coli. Int. J. Pept. Res. Ther. 25, 1431–1439 (2019).
