Paper-based fluorescent assay for blood typing and antibody titer determination using long-term ambient-stored bioengineered RBCs

paper-based-fluorescent-assay-for-blood-typing-and-antibody-titer-determination-using-long-term-ambient-stored-bioengineered-rbcs
Paper-based fluorescent assay for blood typing and antibody titer determination using long-term ambient-stored bioengineered RBCs

References

  1. Nunez, T. C. & Cotton, B. A. Transfusion therapy in hemorrhagic shock. Curr. Opin. Crit. Care 15, 536–541 (2009).

    Google Scholar 

  2. Jayabose, S., Tugal, O., Ruddy, R., Wuest, D. & Ciavarella, D. Transfusion therapy for severe anemia. Am. J. Pediatr. Hematol. Oncol. 15, 324–327 (1993).

    Google Scholar 

  3. Spahn, D. R. & Rossaint, R. Coagulopathy and blood component transfusion in trauma. Br. J. Anaesth. 95, 130–139 (2005).

    Google Scholar 

  4. Daniels, G. & Sanger, R. Human Blood Groups (Wiley-Blackwell, 2013).

  5. Kvržić, Z. The discovery of blood groups in the twentieth century. In 57–77, https://doi.org/10.1007/978-3-031-68715-0_7 (Springer, 2024).

  6. Farhud, D. D. & Zarif Yeganeh, M. A brief history of human blood groups. Iran. J. Public Health 42, 1–6 (2013).

    Google Scholar 

  7. Berséus, O., Boman, K., Nessen, S. C. & Westerberg, L. A. Risks of hemolysis due to anti-a and anti-B caused by the transfusion of blood or blood components containing ABO-incompatible plasma. Transfusion 53 114S-123S (2013).

  8. Matteocci, A. & Pierelli, L. Immuno-hematologic complexity of ABO-incompatible allogeneic HSC transplantation. Cells 13, 814 (2024).

    Google Scholar 

  9. Hult, A. K., Dykes, J. H., Storry, J. R. & Olsson, M. L. A and B antigen levels acquired by group O donor-derived erythrocytes following ABO-non-identical transfusion or minor ABO-incompatible haematopoietic stem cell transplantation. Transfus. Med. Oxf. Engl. 27, 181–191 (2017).

    Google Scholar 

  10. Panch, S. R., Montemayor-Garcia, C. & Klein, H. G. Hemolytic transfusion reactions. N. Engl. J. Med. 381, 150–162 (2019).

    Google Scholar 

  11. Ding, Z., Zhang, X. & Li, H. Application of IgG antibody titer and subtype in diagnosis and severity assessment of hemolytic disease of the newborn. Transl. Pediatr. 11, 1544–1551 (2022).

    Google Scholar 

  12. Murray, N. A. & Roberts, I. A. G. Haemolytic disease of the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 92, F83–F88 (2007).

    Google Scholar 

  13. Quraishy, N. & Sapatnekar, S. Advances in blood typing. Adv. Clin. Chem. 77, 221–269 (2016).

    Google Scholar 

  14. Li, M., Tian, J., Al-Tamimi, M. & Shen, W. Paper-based blood typing device that reports patient’s blood type ‘in writing’. Angew. Chem. Int. Ed. Engl. 51, 5497–5501 (2012).

    Google Scholar 

  15. Guan, L. et al. Barcode-like paper sensor for smartphone diagnostics: an application of blood typing. Anal. Chem. 86, 11362–11367 (2014).

    Google Scholar 

  16. Yeow, N., McLiesh, H., Guan, L., Shen, W. & Garnier, G. Paper-based assay for red blood cell antigen typing by the indirect antiglobulin test. Anal. Bioanal. Chem. 408, 5231–5238 (2016).

    Google Scholar 

  17. Hertaeg, M. J., Tabor, R. F., McLiesh, H. & Garnier, G. A rapid paper-based blood typing method from droplet wicking. Analyst 146, 1048–1056 (2021).

    Google Scholar 

  18. Manderson, C. A., McLiesh, H., Tabor, R. F. & Garnier, G. Droplet-based blood group antibody screening with laser incubation. Analyst 146, 2499–2505 (2021).

    Google Scholar 

  19. Manderson, C. A. et al. Laser incubation for the rapid detection of red cell alloantibodies in human blood samples. Vox Sang. 117, 1302–1309 (2022).

    Google Scholar 

  20. Songjaroen, T. et al. A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing. J. Immunoass. Immunochem. 39, 292–307 (2018).

    Google Scholar 

  21. Chomean, S., Bunnun, P., Auttapong, J. & Kaset, C. Phenotyping of minor blood groups (C, c, E, e, and mia) using a paper-based device and image-based high-throughput detection. Anal. Chim. Acta 1237, 340573 (2023).

    Google Scholar 

  22. Min, S. et al. Rapid and easily identifiable blood typing on microfluidic cotton thread-based analytical devices. Lab. Chip 23, 4680–4689 (2023).

    Google Scholar 

  23. Scott, K. L., Lecak, J. & Acker, J. P. Biopreservation of red blood cells: past, present, and future. Transfus. Med. Rev. 19, 127–142 (2005).

    Google Scholar 

  24. Kanias, T. & Acker, J. P. Biopreservation of red blood cells-the struggle with hemoglobin oxidation. FEBS J. 277, 343–356 (2010).

    Google Scholar 

  25. Elliott, G. D., Wang, S. & Fuller, B. J. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017).

    Google Scholar 

  26. Pallotta, V., D’Amici, G. M., D’Alessandro, A., Rossetti, R. & Zolla, L. Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Blood Cells Mol. Dis. 48, 226–232 (2012).

    Google Scholar 

  27. Hillyer, C. D. Blood Banking and Transfusion Medicine: Basic Principles & Practice (Churchill Livingstone/Elsevier, 2007).

  28. Yoshida, T., Prudent, M. & D’alessandro, A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. Trasfus. Sangue 17, 27–52 (2019).

    Google Scholar 

  29. Mohandas, N. & Gallagher, P. G. Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008).

    Google Scholar 

  30. Carson, J. L. et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. Jama 316, 2025–2035 (2016).

    Google Scholar 

  31. Carson, J. L. et al. Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann. Intern. Med. 157, 49–58 (2012).

    Google Scholar 

  32. Howard, P. R. & Hicks, W. A. Basic & Applied Concepts of Blood Banking and Transfusion Practices (Elsevier, 2025).

  33. Characteristics of anti-A and anti-B in black Zimbabweans – PubMed. https://pubmed.ncbi.nlm.nih.gov/7863632/.

  34. Tendulkar, A. A., Jain, P. A. & Velaye, S. Antibody titers in group O platelet donors. Asian J. Transfus. Sci. 11, 22–27 (2017).

    Google Scholar 

  35. Khampanon, K. et al. The characteristics of ABO antibodies in group O Thai blood donors. J. Clin. Lab. Anal. 26, 223–226 (2012).

    Google Scholar 

  36. Adewuyi, J. O. & Gwanzura, C. Racial difference between white and black Zimbabweans in the haemolytic activity of a, B, O antibodies. Afr. J. Med. Med. Sci. 30, 71–74 (2001).

    Google Scholar 

  37. Poole, J. & Daniels, G. Blood group antibodies and their significance in transfusion medicine. Transfus. Med. Rev. 21, 58–71 (2007).

    Google Scholar 

  38. García-Roa, M. et al. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. Trasfus. Sangue 15, 222–231 (2017).

    Google Scholar 

  39. Kang, S. J., Lim, Y. A. & Baik, S. Y. Comparison of ABO antibody titers on the basis of the antibody detection method used. Ann. Lab. Med. 34, 300–306 (2014).

    Google Scholar 

  40. Roberts, G. Antibody titration. J. Contin. Educ. Top. Issues 16, 24–29 (2014).

    Google Scholar 

  41. Sun, L. et al. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv. Drug Deliv. Rev. 209, 115320 (2024).

    Google Scholar 

  42. Fernández-Borbolla, A., García-Hevia, L. & Fanarraga, M. L. Cell membrane-coated nanoparticles for precision medicine: a comprehensive review of coating techniques for tissue-specific therapeutics. Int. J. Mol. Sci. 25, 2071 (2024).

    Google Scholar 

  43. Krishnan, N. et al. A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nat. Nanotechnol. 19, 345–353 (2024).

    Google Scholar 

  44. Stussi, G. et al. Isotype-specific detection of ABO blood group antibodies using a novel flow cytometric method. Br. J. Haematol. 130, 954–963 (2005).

    Google Scholar 

  45. Then, W. L., Aguilar, M.-I. & Garnier, G. Quantitative blood group typing using surface plasmon resonance. Biosens. Bioelectron. 73, 79–84 (2015).

    Google Scholar 

  46. Krasowski, M. D. Educational case: hemolysis and lipemia interference with laboratory testing. Acad. Pathol. 6, 2374289519888754 (2019).

    Google Scholar 

  47. Chaudhuri, D. et al. Executive summary: guidelines on use of corticosteroids in critically ill patients with sepsis, acute respiratory distress syndrome, and community-acquired pneumonia, focused update 2024. Crit. Care Med. 52, 833–836 (2024).

    Google Scholar 

  48. Stubbs, J. R., Zielinski, M. D. & Jenkins, D. The state of the science of whole blood: lessons learned at Mayo Clinic. Transfusion 56 S173–S181 (2016).

  49. Belin, T. R. et al. An evaluation of methods for producing low-titer group O whole blood to support military trauma resuscitation. J. Trauma Acute Care Surg. 82, S79–S86 (2017).

    Google Scholar 

  50. Martinaud, C., Fleuriot, E. & Pasquier, P. Implementation of low titer whole blood for French overseas operations: O positive or negative products in massive hemorrhage? Transfus. Clin. Biol. J. Soc. Francaise Transfus. Sang. 29, 164–167 (2022).

    Google Scholar 

Download references