References
-
Bolan, S. et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 909, 168388 (2024).
-
Li, T. et al. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. J. Integr. Agric. 21, 2465–2476 (2022).
-
Sher, A. et al. Heat stress effects on legumes: Challenges, management strategies and future insights. Plant Stress 13, 100537 (2024).
-
Carillo, P. Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot?. Plant Stress 16, 100802 (2025).
-
Liu, M., Xiao, R., Li, X., Zhao, Y. & Huang, J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr. Rev. Food Sci. Food Saf. 24, e70078 (2025).
-
Mishra, H. Nanobiostimulants and Precision Agriculture: A Data-Driven Approach to Farming and Market Dynamics. Nanobiostimulants: Emerging Strategies for Agricultural Sustainability 365–398.(Springer, 2024)
-
Khan, N. Exploring plant resilience through secondary metabolite profiling: Advances in stress response and crop improvement. Plant Cell Environ. (2025).
-
Wang, S., Liang, S., Liu, Y. & Chen, Y. Advances in endangered plant research: Ammopiptanthus’s responses to biotic and abiotic stressors. Forests 15, 890 (2024).
-
Mwelase, S., Adeyemi, J. O. & Fawole, O. A. Recent advances in postharvest application of exogenous phytohormones for quality preservation of fruits and vegetables. Plants. 13, 3255 (2024).
-
Wathoni, N., Herdiana, Y., Suhandi, C., Mohammed, A. F. A., El-Rayyes, A. & Narsa, A. C. Chitosan/alginate-based nanoparticles for antibacterial agents delivery. Int. J. Nanomed.5021–44 (2024).
-
Ma, C. et al. Recent advances in stimulus-responsive nanocarriers for pesticide delivery. J. Agric. Food Chem. 72, 8906–8927 (2024).
-
Hossen, M. A. et al. Essential oil–loaded biopolymeric particles on food industry and packaging: A review. Int. J. Biol. Macromol. 265, 130765 (2024).
-
Jiménez-Gómez, C. P. & Cecilia, J. A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 25, 3981 (2020).
-
Arshad, U. Biochar Application: A Sustainable Approach for Mitigating Biotic and Abiotic Stresses in Plants. (2024).
-
Xue, P. et al. Effects of biochar and straw application on the soil structure and water-holding and gas transport capacities in seasonally frozen soil areas. J. Environ. Manage. 301, 113943 (2022).
-
Wijitkosum, S., Sriburi, T. & Krutnoi, L. Taking advantage of disposal bamboo chopsticks to produce biochar for greenhouse crop cultivation. Emerg. Sci. J. 8, 917–932 (2024).
-
Jatuwong, K., Aiduang, W., Kiatsiriroat, T., Kamopas, W. & Lumyong, S. A Review of biochar from biomass and its interaction with microbes: Enhancing soil quality and crop yield in Brassica cultivation. Life. 15, 284 (2025).
-
Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation (Taylor & Francis, 2024).
-
Khosropour, E., Weisany, W., Tahir, N.A.-r & Hakimi, L. Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environ. Sci. Pollut. Res. 29(12), 17476–17486 (2022).
-
Jarudilokkul, S., Tongthammachat, A. & Boonamnuayvittaya, V. Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J. Chem. Eng. 28, 1247–1251 (2011).
-
Weisany, W., Soufiania, S. P., Razmi, J. & Eshaghadadi, A. H. Nano-encapsulation of fenugreek and coriander essential oils using copper oxide NPs: Novel approach for augmenting their effectiveness against Colletotrichum nymphaeae. Ind. Crops Prod. 219, 119051 (2024).
-
Mohan, N., Pal, A., Saharan, V., Kumar, A., Vashishth, R. & Prince, S. E. Development, characterization, and evaluation of Zn-SA-chitosan bionanoconjugates on wheat seed, experiencing chilling stress during germination. Heliyon 10 (2024).
-
Mohan, N., Pal, A. & Saharan, V. Nano-armored wheat: Enhancing heat stress resilience and yield via zinc-salicylic acid–chitosan bionanoconjugates. J. Polym. Environ. 32, 6725–6741 (2024).
-
Darakeh, S. A. S. S., Weisany, W., Tahir, N.A.-R. & Schenk, P. M. Physiological and biochemical responses of black cumin to vermicompost and plant biostimulants: Arbuscular mycorrhizal and plant growth-promoting rhizobacteria. Ind. Crops Prod. 188, 115557 (2022).
-
Rodriguez-Dominguez, C. M. et al. Leaf water potential measurements using the pressure chamber: synthetic testing of assumptions towards best practices for precision and accuracy. Plant Cell Environ. 45, 2037–2061 (2022).
-
Alam, A., Ullah, H., Cha-um, S., Tisarum, R. & Datta, A. Effect of seed priming with potassium nitrate on growth, fruit yield, quality and water productivity of cantaloupe under water-deficit stress. Sci. Hortic. 288, 110354 (2021).
-
Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. & Ghassemi-Golezani, K. Physiological responses of soybean (‘Glycine max’L.) To zinc application under salinity stress. Aust. J. Crop Sci. 5, 1441–1447 (2011).
-
Reed, S., Schnell, R., Moore, J. M. & Dunn, C. Chlorophyll a+b content and chlorophyll fluorescence in avocado. J. Agric. Sci. 4, 29 (2012).
-
Rowell, D. Soil Science: Methods and Applications. Essex, England. (Pearson Education Limited, 1994).
-
Ciumac, D. et al. Influence of acyl chain saturation on the membrane-binding activity of a short antimicrobial peptide. ACS Omega 2, 7482–7492 (2017).
-
Wang, Z., Chen, C., Zhang, R., Ma, L. & Lin, K. Local interactions in aqueous ethanol solution revealed by the C=O stretching probe. Molecules 30, 1524 (2025).
-
Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J. & Yoo, C. G. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 10(12), 4345 (2020).
-
Hu, H. et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).
-
Chandra, A. K. et al. Climate-resilience maize: Heat stress, signaling, and molecular interventions. J. Plant Growth Regul. 42, 6349–6366 (2023).
-
Chen, C.-L. et al. Methyl jasmonate enhances rice tolerance to alkaline stress via the auxin pathway. Plant Stress 14, 100612 (2024).
-
Hasnain, M. et al. Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicol. Environ. Saf. 249, 114408 (2023).
-
Anwar, T. et al. Synergistic effects of gibberellic acid, biochar, and rhizobacteria on wheat growth under heavy metal and drought stress. BMC Plant Biol. 24, 1168 (2024).
-
Luo, Z. et al. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiol. 180, 1660–1676 (2019).
-
Antonangelo, J. A., Sun, X. & Eufrade-Junior, Hd. J. Biochar impact on soil health and tree-based crops: a review. Biochar 7, 51 (2025).
-
Didaran, F. et al. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. J. Photochem. Photobiol., B 259, 113004 (2024).
-
Al-Salman, Y., Ghannoum, O. & Cano, F. J. Elevated [CO2] negatively impacts C4 photosynthesis under heat and water stress without penalizing biomass. J. Exp. Bot. 74, 2875–2890 (2023).
-
Sherin, G., Aswathi, K. P. R. & Puthur, J. T. Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 4, 100079 (2022).
-
Zaid, A. & Mohammad, F. Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J. Plant Growth Regul. 37, 1331–1348 (2018).
-
Yu, X. et al. The roles of methyl jasmonate to stress in plants. Funct. Plant Biol. 46, 197–212 (2018).
-
Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 81, 687–711 (2017).
-
Zhen, S., Haidekker, M. & van Iersel, M. W. Far-red light enhances photochemical efficiency in a wavelength-dependent manner. Physiol. Plant. 167, 21–33 (2019).
-
Dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F. & Domingues, D. S. Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses. 2, 113–135 (2022).
-
Giri, A., Heckathorn, S., Mishra, S. & Krause, C. Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants. 6, 6 (2017).
-
Pan, G. et al. Effects of modified biochar on growth, yield, and quality of Brassica chinensis L. in cadmium contaminated soils. Plants 14, 524 (2025).
-
Farhangi-Abriz, S. & Ghassemi-Golezani, K. The modified biochars influence nutrient and osmotic statuses and hormonal signaling of mint plants under fluoride and cadmium toxicities. Front. Plant Sci. 13, 1064409 (2022).
-
Biondi, S., Scaramagli, S., Capitani, F., Altamura, M. M. & Torrigiani, P. Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J. Exp. Bot. 52, 231–242 (2001).
-
Nascimento, ÍVd. et al. Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: A review. Environ. Res. 233, 116489 (2023).
-
Kabir, E., Kim, K.-H. & Kwon, E. E. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci. 11, 1324533 (2023).
-
Wang, H. et al. Increased hormone activity promotes silk development and heat tolerance during the floret differentiation stage in maize. Crop J. 13, 545 (2025).
-
Davoudi, M., Chen, J. & Lou, Q. Genome-wide identification and expression analysis of Heat Shock Protein 70 (HSP70) gene family in pumpkin (Cucurbita moschata) rootstock under drought stress suggested the potential role of these Chaperones in stress tolerance. Int. J. Mol. Sci. 23, 1918 (2022).
-
Hull, A. K., Vij, R. & Celenza, J. L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 97, 2379–2384 (2000).
-
Rasool, M., Akhter, A. & Haider, M. S. Molecular and biochemical insight into biochar and Bacillus subtilis induced defense in tomatoes against Alternaria solani. Sci. Hortic. 285, 110203 (2021).
