Early diagnosis of pancreatic ductal adenocarcinoma by signal-enhanced lateral flow immunoassay: SELFI

early-diagnosis-of-pancreatic-ductal-adenocarcinoma-by-signal-enhanced-lateral-flow-immunoassay:-selfi
Early diagnosis of pancreatic ductal adenocarcinoma by signal-enhanced lateral flow immunoassay: SELFI

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Google Scholar 

  2. Mizrahi, J. D., Surana, R., Valle, J. W. & Shroff, R. T. Pancreatic cancer. Lancet 395, 2008–2020 (2020).

    Google Scholar 

  3. Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10, 10–27 (2019).

    Google Scholar 

  4. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Google Scholar 

  5. Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2, 16022 (2016).

    Google Scholar 

  6. Eissa, M. A. L. et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin. Epigenetics 11, 59 (2019).

    Google Scholar 

  7. Kobi, M. et al. Imaging and management of pancreatic cancer. Semin. Ultrasound CT MR 41, 139–151 (2020).

    Google Scholar 

  8. Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).

    Google Scholar 

  9. Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).

    Google Scholar 

  10. McGuigan, A. et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 24, 4846–4861 (2018).

    Google Scholar 

  11. Blackford, A. L. et al. Pancreatic cancer surveillance and survival of high-risk individuals. JAMA Oncol. 10, 1087–1096 (2024).

    Google Scholar 

  12. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Google Scholar 

  13. Pereira, S. P. et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 5, 698–710 (2020).

    Google Scholar 

  14. Su, C.-W., Tian, J.-H., Ye, J.-J., Chang, H.-W. & Tsai, Y.-C. Construction of a label-free electrochemical immunosensor based on Zn-Co-S/graphene nanocomposites for carbohydrate antigen 19-9 detection. Nanomaterials 11, 1475 (2021).

    Google Scholar 

  15. Wu, S. et al. Collard-like Bi2S3@ Au nanocomposites-based label free electrochemical immunosensor for quantitative detection of CA19-9. Talanta 285, 127299 (2025).

  16. Zhao, T. & Jin, B. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9. Anal. Methods 16, 6173–6182 (2024).

    Google Scholar 

  17. Han, X., Lin, S., Li, Y., Cheng, C. & Han, X. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Anal. Chim. Acta 1098, 117–124 (2020).

    Google Scholar 

  18. Xia, J., Li, Y., Xin, Y., Kang, L. & Lu, D. Early detection for carbohydrate antigen-19-9 based on surface enhanced Raman spectroscopy aptamer sensor. Microchem. J. 207, 111750 (2024).

    Google Scholar 

  19. Hwang, I.-J. et al. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer. Biosens. Bioelectron. 248, 115948 (2024).

    Google Scholar 

  20. Di Nardo, F., Chiarello, M., Cavalera, S., Baggiani, C. & Anfossi, L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors 21, 5185 (2021).

    Google Scholar 

  21. Wang, Z. et al. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 6, 2101143 (2022).

    Google Scholar 

  22. Wang, J. et al. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol. Sci. Rep. 7, 41419 (2017).

    Google Scholar 

  23. Wei, Z., Xi, Z., Vlasov, S., Ayala, J. & Xia, X. Nanocrystals of platinum-group metals as peroxidase mimics for in vitro diagnostics. Chem. Commun. 56, 14962–14975 (2020).

    Google Scholar 

  24. Wei, Z., Luciano, K. & Xia, X. Catalytic gold-iridium nanoparticles as labels for sensitive colorimetric lateral flow assay. ACS Nano 16, 21609–21617 (2022).

    Google Scholar 

  25. Kim, H.-M. et al. Au–Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J. Nanobiotechnol. 19, 73 (2021).

    Google Scholar 

  26. Hong, D., Jo, E.-J., Jung, C. & Kim, M.-G. Absorption-modulated SiO2@Au core–satellite nanoparticles for highly sensitive detection of SARS-CoV-2 nucleocapsid protein in lateral flow immunosensors. ACS Appl. Mater. Interfaces 14, 45189–45200 (2022).

    Google Scholar 

  27. Kim, H.-M. et al. Multi-quantum dots-embedded silica-encapsulated nanoparticle-based lateral flow assay for highly sensitive exosome detection. Nanomaterials 11, 768 (2021).

    Google Scholar 

  28. Bock, S. et al. Lateral flow immunoassay with quantum-dot-embedded silica nanoparticles for prostate-specific antigen detection. Nanomaterials 12, 33 (2022).

    Google Scholar 

  29. Khelifa, L., Hu, Y., Jiang, N. & Yetisen, A. K. Lateral flow assays for hormone detection. Lab Chip 22, 2451–2475 (2022).

    Google Scholar 

  30. Mahmoudi, T., Shirdel, B., Mansoori, B. & Baradaran, B. Dual sensitivity enhancement in gold nanoparticle-based lateral flow immunoassay for visual detection of carcinoembryonic antigen. Anal. Sci. Adv. 1, 161–172 (2020).

    Google Scholar 

  31. Zhu, J. et al. One-pot synthesized Au@Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody. Anal. Chim. Acta 1292, 342241 (2024).

    Google Scholar 

  32. Huang, Y. et al. Lateral flow assay for carbohydrate antigen 19–9 in whole blood by using magnetized carbon nanotubes. Microchim. Acta 184, 4287–4294 (2017).

    Google Scholar 

  33. Jiao, X. et al. Lateral flow immunoassay based on time-resolved fluorescence microspheres for rapid and quantitative screening CA199 in human serum. Int. J. Mol. Sci. 23, 9991 (2022).

    Google Scholar 

  34. Shin, M. et al. Highly sensitive multiplexed colorimetric lateral flow immunoassay by plasmon-controlled metal–silica isoform nanocomposites: PINs. Nano Converg. 11, 42 (2024).

    Google Scholar 

  35. Jain, P. K. & El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010).

    Google Scholar 

  36. Zuo, Z. et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering. Nano Res. 15, 317–325 (2022).

    Google Scholar 

  37. Su, D. et al. Ordered gold nanocluster-based plasmonic hotspot arrays for SERS detection of single molecules. ACS Appl. Nano Mater. 5, 17067–17077 (2022).

    Google Scholar 

  38. Li, H., Merkl, P., Sommertune, J., Thersleff, T. & Sotiriou, G. A. SERS hotspot engineering by aerosol self-assembly of plasmonic Ag nanoaggregates with tunable interparticle distance. Adv. Sci. 9, 2201133 (2022).

    Google Scholar 

  39. Li, X. et al. Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 30, 549–558 (2016).

    Google Scholar 

  40. Yu, G. et al. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 10, 4912 (2019).

    Google Scholar 

  41. Ma, L. et al. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@ CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 12, 4383–4392 (2020).

    Google Scholar 

  42. Choi, I. et al. Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Chem. Commun. 48, 2286–2288 (2012).

    Google Scholar 

  43. An, H. J. et al. High-spatial and colourimetric imaging of histone modifications in single senescent cells using plasmonic nanoprobes. Nat. Commun. 12, 5899 (2021).

    Google Scholar 

  44. Liu, D. et al. Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 28, 1707392 (2018).

    Google Scholar 

  45. Materón, E. M. et al. Colorimetric detection of SARS-CoV-2 using plasmonic biosensors and smartphones. ACS Appl. Mater. Interfaces 14, 54527–54538 (2022).

    Google Scholar 

  46. Kang, H. et al. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23, 3719–3727 (2013).

    Google Scholar 

  47. Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    Google Scholar 

  48. Sun, Z., Du, J., Duan, F., He, K. & Jing, C. Simulation and synthesis of Fe3O4–Au satellite nanostructures for optimised surface-enhanced Raman scattering. J. Mater. Chem. C 6, 2252–2257 (2018).

    Google Scholar 

  49. De Silva Indrasekara, A. S. et al. Tailoring the core–satellite nanoassembly architectures by tuning internanoparticle electrostatic interactions. Langmuir 34, 14617–14623 (2018).

    Google Scholar 

  50. Song, D. & Jing, D. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: theoretical prediction and experimental validation. J. Colloid Interface Sci. 505, 373–382 (2017).

    Google Scholar 

  51. Wang, Y. et al. Establishment of time-resolved fluorescence immunochromatographic assay for detection of carbohydrate antigen 19-9. Sheng Wu Gong Cheng Xue Bao 34, 1012–1018 (2018).

    Google Scholar 

  52. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Google Scholar 

  53. Zhang, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y. & Ming, N. B. Preparation of monodisperse silica particles with controllable size and shape. J. Mater. Res. 18, 649–653 (2003).

    Google Scholar 

  54. Li, H. et al. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 13, 15998–16016 (2021).

    Google Scholar 

  55. Ruan, Q., Shao, L., Shu, Y., Wang, J. & Wu, H. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2, 65–73 (2014).

    Google Scholar 

  56. Tempero, M. A. et al. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 47, 5501–5503 (1987).

    Google Scholar 

  57. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).

    Google Scholar 

  58. Werner, W. S. M., Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electrons scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).

    Google Scholar 

  59. Martin, M. N., Basham, J. I., Chando, P. & Eah, S.-K. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26, 7410–7417 (2010).

    Google Scholar 

  60. Parolo, C. et al. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 15, 3788–3816 (2020).

    Google Scholar 

  61. Torchiano, M. effsize: Efficient Effect Size Computation (R package version 0.8.1). CRAN, https://CRAN.R-project.org/package=effsize (2020).

  62. Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S. & Anandkumar, A. pwr: Basic Functions for Power Analysis. R package version 1.3-0. https://CRAN.R-project.org/package=pwr (2018).

Download references