References
-
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
-
Mizrahi, J. D., Surana, R., Valle, J. W. & Shroff, R. T. Pancreatic cancer. Lancet 395, 2008–2020 (2020).
-
Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10, 10–27 (2019).
-
Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).
-
Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2, 16022 (2016).
-
Eissa, M. A. L. et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin. Epigenetics 11, 59 (2019).
-
Kobi, M. et al. Imaging and management of pancreatic cancer. Semin. Ultrasound CT MR 41, 139–151 (2020).
-
Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).
-
Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).
-
McGuigan, A. et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 24, 4846–4861 (2018).
-
Blackford, A. L. et al. Pancreatic cancer surveillance and survival of high-risk individuals. JAMA Oncol. 10, 1087–1096 (2024).
-
Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).
-
Pereira, S. P. et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 5, 698–710 (2020).
-
Su, C.-W., Tian, J.-H., Ye, J.-J., Chang, H.-W. & Tsai, Y.-C. Construction of a label-free electrochemical immunosensor based on Zn-Co-S/graphene nanocomposites for carbohydrate antigen 19-9 detection. Nanomaterials 11, 1475 (2021).
-
Wu, S. et al. Collard-like Bi2S3@ Au nanocomposites-based label free electrochemical immunosensor for quantitative detection of CA19-9. Talanta 285, 127299 (2025).
-
Zhao, T. & Jin, B. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9. Anal. Methods 16, 6173–6182 (2024).
-
Han, X., Lin, S., Li, Y., Cheng, C. & Han, X. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Anal. Chim. Acta 1098, 117–124 (2020).
-
Xia, J., Li, Y., Xin, Y., Kang, L. & Lu, D. Early detection for carbohydrate antigen-19-9 based on surface enhanced Raman spectroscopy aptamer sensor. Microchem. J. 207, 111750 (2024).
-
Hwang, I.-J. et al. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer. Biosens. Bioelectron. 248, 115948 (2024).
-
Di Nardo, F., Chiarello, M., Cavalera, S., Baggiani, C. & Anfossi, L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors 21, 5185 (2021).
-
Wang, Z. et al. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 6, 2101143 (2022).
-
Wang, J. et al. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol. Sci. Rep. 7, 41419 (2017).
-
Wei, Z., Xi, Z., Vlasov, S., Ayala, J. & Xia, X. Nanocrystals of platinum-group metals as peroxidase mimics for in vitro diagnostics. Chem. Commun. 56, 14962–14975 (2020).
-
Wei, Z., Luciano, K. & Xia, X. Catalytic gold-iridium nanoparticles as labels for sensitive colorimetric lateral flow assay. ACS Nano 16, 21609–21617 (2022).
-
Kim, H.-M. et al. Au–Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J. Nanobiotechnol. 19, 73 (2021).
-
Hong, D., Jo, E.-J., Jung, C. & Kim, M.-G. Absorption-modulated SiO2@Au core–satellite nanoparticles for highly sensitive detection of SARS-CoV-2 nucleocapsid protein in lateral flow immunosensors. ACS Appl. Mater. Interfaces 14, 45189–45200 (2022).
-
Kim, H.-M. et al. Multi-quantum dots-embedded silica-encapsulated nanoparticle-based lateral flow assay for highly sensitive exosome detection. Nanomaterials 11, 768 (2021).
-
Bock, S. et al. Lateral flow immunoassay with quantum-dot-embedded silica nanoparticles for prostate-specific antigen detection. Nanomaterials 12, 33 (2022).
-
Khelifa, L., Hu, Y., Jiang, N. & Yetisen, A. K. Lateral flow assays for hormone detection. Lab Chip 22, 2451–2475 (2022).
-
Mahmoudi, T., Shirdel, B., Mansoori, B. & Baradaran, B. Dual sensitivity enhancement in gold nanoparticle-based lateral flow immunoassay for visual detection of carcinoembryonic antigen. Anal. Sci. Adv. 1, 161–172 (2020).
-
Zhu, J. et al. One-pot synthesized Au@Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody. Anal. Chim. Acta 1292, 342241 (2024).
-
Huang, Y. et al. Lateral flow assay for carbohydrate antigen 19–9 in whole blood by using magnetized carbon nanotubes. Microchim. Acta 184, 4287–4294 (2017).
-
Jiao, X. et al. Lateral flow immunoassay based on time-resolved fluorescence microspheres for rapid and quantitative screening CA199 in human serum. Int. J. Mol. Sci. 23, 9991 (2022).
-
Shin, M. et al. Highly sensitive multiplexed colorimetric lateral flow immunoassay by plasmon-controlled metal–silica isoform nanocomposites: PINs. Nano Converg. 11, 42 (2024).
-
Jain, P. K. & El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010).
-
Zuo, Z. et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering. Nano Res. 15, 317–325 (2022).
-
Su, D. et al. Ordered gold nanocluster-based plasmonic hotspot arrays for SERS detection of single molecules. ACS Appl. Nano Mater. 5, 17067–17077 (2022).
-
Li, H., Merkl, P., Sommertune, J., Thersleff, T. & Sotiriou, G. A. SERS hotspot engineering by aerosol self-assembly of plasmonic Ag nanoaggregates with tunable interparticle distance. Adv. Sci. 9, 2201133 (2022).
-
Li, X. et al. Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 30, 549–558 (2016).
-
Yu, G. et al. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 10, 4912 (2019).
-
Ma, L. et al. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@ CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale 12, 4383–4392 (2020).
-
Choi, I. et al. Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Chem. Commun. 48, 2286–2288 (2012).
-
An, H. J. et al. High-spatial and colourimetric imaging of histone modifications in single senescent cells using plasmonic nanoprobes. Nat. Commun. 12, 5899 (2021).
-
Liu, D. et al. Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 28, 1707392 (2018).
-
Materón, E. M. et al. Colorimetric detection of SARS-CoV-2 using plasmonic biosensors and smartphones. ACS Appl. Mater. Interfaces 14, 54527–54538 (2022).
-
Kang, H. et al. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23, 3719–3727 (2013).
-
Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).
-
Sun, Z., Du, J., Duan, F., He, K. & Jing, C. Simulation and synthesis of Fe3O4–Au satellite nanostructures for optimised surface-enhanced Raman scattering. J. Mater. Chem. C 6, 2252–2257 (2018).
-
De Silva Indrasekara, A. S. et al. Tailoring the core–satellite nanoassembly architectures by tuning internanoparticle electrostatic interactions. Langmuir 34, 14617–14623 (2018).
-
Song, D. & Jing, D. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: theoretical prediction and experimental validation. J. Colloid Interface Sci. 505, 373–382 (2017).
-
Wang, Y. et al. Establishment of time-resolved fluorescence immunochromatographic assay for detection of carbohydrate antigen 19-9. Sheng Wu Gong Cheng Xue Bao 34, 1012–1018 (2018).
-
Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).
-
Zhang, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y. & Ming, N. B. Preparation of monodisperse silica particles with controllable size and shape. J. Mater. Res. 18, 649–653 (2003).
-
Li, H. et al. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 13, 15998–16016 (2021).
-
Ruan, Q., Shao, L., Shu, Y., Wang, J. & Wu, H. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2, 65–73 (2014).
-
Tempero, M. A. et al. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 47, 5501–5503 (1987).
-
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
-
Werner, W. S. M., Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electrons scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
-
Martin, M. N., Basham, J. I., Chando, P. & Eah, S.-K. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26, 7410–7417 (2010).
-
Parolo, C. et al. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 15, 3788–3816 (2020).
-
Torchiano, M. effsize: Efficient Effect Size Computation (R package version 0.8.1). CRAN, https://CRAN.R-project.org/package=effsize (2020).
-
Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S. & Anandkumar, A. pwr: Basic Functions for Power Analysis. R package version 1.3-0. https://CRAN.R-project.org/package=pwr (2018).
